GUJARAT TECHNOLOGICAL UNIVERSITY

		DE CEMESTED VIOLEND EXAMINATION WINTED 2022			
BE - SEMESTER-VI (NEW) EXAMINATION – WINTER 2023 Subject Code:3160918 Date:11-12-20					
•	•		-2023		
•	•	Name:Element of Electrical Design			
Tim	e:02	:30 PM TO 05:00 PM Total Mark	s:70		
Instr	uctio	ns:			
	1.	Attempt all questions.			
	2.	Make suitable assumptions wherever necessary.			
		Figures to the right indicate full marks.			
	4.	Simple and non-programmable scientific calculators are allowed.	Manles		
			Marks		
Q.1	(a)	Write comparison between simplex lap and simplex wave winding	03		
		applied to dc armature.			
	(b)	Give classification of insulating material used in electrical machines	04		
	(c)	Explain steps for design of single phase variable chock coil.	07		
Q.2	(a)	Define the following terms used in armature winding design:	03		
		(1) back pitch (2) Commutator pitch (3) winding pitch			
	(b)	Discuss B-H curve in magnetic circuit	04		
	(c)	Determine the air gap length of DC Machine from the following data:	07		
		Gross core length=0.1 meter, Number of ducts=1, Width of duct=10 mm,			
		Slot pitch= 24 mm, Slot Width= 12mm, Carter's coefficient for slots and			
		ducts=0.3, Gap flux density at pole center=0.65 T, Field MMF per			
		pole=3800 A, MMF required for iron parts of magnetic circuit= 600 A.			
		OR			
	(c)	What is real and apparent flux density in the tooth of DC machine	07		
		armature? Give difference between them & also derive relation between			
		them.			
Q.3	(a)	Discuss function & necessity of field regulator in case of DC shunt	03		
		motor.			
	(b)	Why starter is necessary for starting 3- phase induction motor?	04		
	(c)	Design a suitable 8 section starter for a 14.92 KW, 250 V, 1000 rpm, DC	07		
		shunt motor from following data.			
		Maximum starting torque= Full load torque, Armature circuit			
		resistance= 0.4Ω , Full load efficiency= 0.85			
		OR			
Q.3	(a)	Differentiate single layer and double layer winding.	03		
	(b)	Explain the significance of dummy coils and equalizer connections in DC	04		
		armature windings.			
	(c)	Write steps for designing small single phase Transformer.	07		
Q.4	(a)	What are the factors that should be considered while selecting the type of	03		
		wiring system?			
	(b)	What is electric load? How will you classify loads?	04		
	(c)	The domestic load in residential building is used in following manner:	07		
		Fluorescent lamps, 55W each, 4 Nos. 6 Hrs/day			
		Fans 70W each, 4 Nos. 8 Hrs/day			
		Refrigerator of 3000W, 12 Hrs./day			
		Heater of 1000W, 2 Hrs./day			
		Television of 150W, 8 Hrs./day			
		Calculate: (a) connected load (b) daily load factor			
		(c) total cost of energy for 30 days, at the rate of Rs. 3/Unit			

Q.4	(a)	State the rules for electrical wiring as per IS.	03
	(b)	What is control panel? State and explain the various components/devices used in the control panel.	04
	(c)	Explain with neat sketches, the different systems of wiring used for domestic installations.	07
Q.5	(a)	What is soft starter? What are the benefits and advantages of soft starter?	03
	(b)	Discuss Leakage reactance calculation for various types of slots for DC machines.	04
	(c)	What is finite element method (FEM) and finite element analysis (FEA)? Give advantages of FEA.	07
		OR	
Q.5	(a)	Give the definition of the following terms with respect to load assessment:	03
		(1) maximum demand (2) load factor (3) diversity factor	
	(b)	State various methods for calculating MMF required for teeth in DC machine & describe any one method for calculating MMF required for teeth in DC machine.	04
	(c)	Explain the installation plan, wiring diagram and single line diagram for electric wiring based on a given load. Also give the rules for deciding the number of sub circuits and power circuit.	07
