Seat No.:	Enrolment No.
3Cat 110	Lindincht 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

a		BE - SEMESTER-VI(NEW) EXAMINATION - WINTER 2022	2022
•		Code:3160918 Date:16-12-	2022
Subj	ect i	Name:Element of Electrical Design	
Time	:02	:30 PM TO 05:00 PM Total Mark	ks:70
Instru	ction		
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
		Simple and non-programmable scientific calculators are allowed.	
			MARKS
Q.1	(a)	List the properties of good insulating materials?	03
	(b)		04
	(c)	Explain steps for design of single phase variable chock coil.	07
	(0)		0.
Q.2	(a)	Define the following terms used in armature winding design: (1) back	03
Q.2	(a)	pitch (2) Commutator pitch (3) winding pitch	0.5
	(b)	- · · · · · · · · · · · · · · · · · · ·	04
	(D)		04
	(-)	drop while determining the size of conductor.	07
	(c)		07
		of ac machine.	
		OR	
	(c)	<u> </u>	07
		a simplex wave wound 13 slots, 4-pole d.c armature with 13 commutator	
		segments. Draw the winding diagram in developed form. Also draw the	
		sequence diagram to indicate the position of brushes. Assume number of	
		coil sides per slot = 2	
Q.3	(a)	Compare closed windings and open windings.	03
_	(b)	Explain the use of dummy coils and equalizer connections in d.c. armature	04
		windings.	
	(c)		07
	(-)	motor having full load slip 2.5%. Maximum starting current=full load	
		current and rotor resistance/phase= 0.025Ω	
		OR	
Q.3	(a)		03
Q.S	(b)	·	04
	(0)	Induction motor? Explain one of starter in brief.	VŦ
	(a)	<u> -</u>	07
	(c)		U/
		D.C. shunt motor from the following data: Maximum starting torque =	
		Full load torque, Armature circuit resistance = 0.4 ohm, Full load	
		efficiency = 0.85	
0.4		D.f., and d.d., and d. (1) 6: 1: E. (2) 6:	0.2
Q.4	(a)		03
	<i>,</i> = :	contraction factor for slots and ducts	
	(b)	•	04
	(c)	Define real and apparent flux densities in the tooth of DC machine	07
		armature and give the difference between them. Also derive the relation	
		between them.	
		OR	
Q.4	(a)	What is Carter's fringing curve? Why it is used.	03

	(b)	State and explain methods for calculating MMF required for tooth in DC machine.	04
	(c)	Explain design procedure of a small single phase transformer.	07
Q.5	(a)	Draw different types of stampings used for making core of small transformer.	03
	(b)	Generating station has connected load of 50 MW and maximum demand of 35 MW. The units generated 75×10 ⁶ per annum. Calculate (1) Demand factor (2) Load factor.	04
	(c)	Discuss the different types of loads with examples.	07
		OR	
Q.5	(a)	State the rules for electrical wiring as per IS.	03
	(b)	Discuss the significance of (i) Space to height ratio (ii) Utilization factor and (iii) Depreciation factor in the design of lighting system.	04
	(c)	A residential building has following load connected in it: Incandescent	07
		lamps 100W each, 02 Nos. 5hrs/day	
		Fluorescent lamps 40W each, 04 Nos. 6hrs/day	
		Fans 60W each, 06 Nos. 5hrs/day	
		Electric cooker 1.5 KW each, 01 Nos. 4hrs/day	
		Electric geyser 1 KW each, 01 Nos. 3hrs/day	
		Calculate the total cost of electrical energy for 30 days,	
