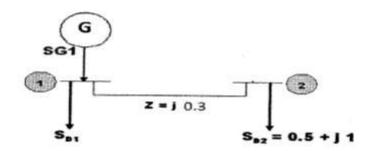
GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI(NEW) EXAMINATION - WINTER 2022

Subject Code:3160920 Date:17-12-2022


Subject Name:Inter Connected Power System

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1*	(a)	State objectives of Load flow Studies.	03
	(b)	Define following terms regarding power system network with suitable examples. 1} Bus 2} Branch 3} Links 4} Tree and co-tree	04
	(c)	State and derive swing equation for the synchronous machine connected to infinite bus as well as explain significance of swing equation.	07
Q.2	(a)	List out input data requirement for load flow analysis.	03
	(b)	Define voltage controlled bus, load bus and slack bus. Explain need of slack bus in power flow analysis.	04
	(c)	Obtain voltage at bus 2 for the system shown in Fig given below using G-S Method.	07

OR

- (c) Develop algorithm for solution of load flow equation in polar coordinates using Newton –Raphson method.
- Q.3 (a) State advantages of Interconnected power system 03
 - (b) Discuss function of load dispatch center. 04

07

(c) Find Y-bus for the system given below.

From	To	Resistance	Reactance
1	2	0	0.35
2	3	0	0.45
1	3	0	0.3
GND	2	0	0.25
GND	3	0	0.1

		OR					
Q.3	(a)	Explain the Primitive network	03				
•	(b)	Write scenario of recent Indian power system	04				
	(c)	Find Y - Bus of the given system using singular transformation	07				
		method.					
		(1)					
		z=jo.4					
		z=j0.25					
			200				
		Z=jo.5					
0.4	(a)	Explain β- coefficient.	03				
Q.4	(b)	Derive the necessary condition for optimal operation of thermal power	04				
	(0)	plants with the transmission losses considered.	07				
	(c)	A generator is supplying a load. An incremental change in load of 5					
		MW requires generation to be increased by 7 MW. The incremental cost at the plant bus is Rs 30 /MWh. What is the incremental cost at					
		the receiving end?					
		OR					
0.4	(a)	Draw and describe significance of heat rate curve and	03				
		Incremental fuel rate curve	04				
	(b)						
		within a plant?					
	(c)	(c) The fuel cost of two unit plants are given by $C1 = 1.5 + 20P_1 + 0.1 P_1^{2}$; $C2 = 2 + 30P_2 + 0.1 P_2^{2}$ where P_1					
		and P ₂ in MW. The plant supplies a load of 250 MW. Find					
		economic load scheduling of two unit and find incremental fuel					
		cost, neglecting losses.					
Q.5	(a)	Define critical clearing time and critical clearing angle as well as	03				
100		write equation of its in context of power system stability					
		analysis.	04				
	(b)	List Out the assumptions that are made in order to simplify the	04				
		computational task in stability studies. Draw block diagram of AGC and Explain its Application	07				
	(c)	OR					
Q.5	(a)	Explain significance of frequency control. Write component of	03				
Q	(4)	power system which are more affected by frequency deviation.					
	(b)	Describe various methods for voltage control which is adopted	04				
	87.50	in power system.					
	(c)	A 50Hz,4 pole turbo alternator rated 100MVA, 11KV has an inertia	07				
		constant of 6 MJ/MVA. Find 1}. The energy stored in the rotor at synchronous speed. 2}. The rotor acceleration if the mechanical input					
		is suddenly raised to 120 MW for an electric load 90MW.	· market				