GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VI (NEW) EXAMINATION – WINTER 2024

Subject Code:3160917 Date:02-12-2024

Subject Name: Wind And Solar Energy

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			17111111
Q.1	(a)	Draw I-V, P-V characteristics of PV. Indicate V_{OC} , I_{SC} , V_{MPP} , I_{MPP} , P_{MPP} on the characteristics. Define fill factor for a PV panel.	03
	(b)	Explain the aerodynamic working principle of wind turbine.	04
	(c)	What is Betz limit? Derive the Betz limit for a wind turbine working on the aerodynamic principle.	07
Q.2	(a)	For a PV module $V_{oc} = 36.72 \text{ V}$, temperature co-efficient of V_{oc} , $\alpha_V = -0.34 \% / ^{\circ}K$. Calculate V_{oc} at 40 $^{\circ}C$.	03
	(b)	Compare horizontal axis and vertical axis wind turbines.	04
	(c)	What is an induction generator? Discuss its working and operating characteristics. OR	07
	(c)	Explain different power electronic converter technologies used in wind energy conversion system.	07
Q.3	(a)	What is length of day on June 21 at Surat? (Surat Location is 21.1702° N, 72.8311° E)	03
	(b)	The I-V characteristics of two PV cells connected in series to deliver power to a load is shown in the figure below. Considering the variation in load explain the sourcing	04

MARKS

	(c)	A PV system with a battery is installed in a pumping station. The load profile of the pumping station is as follows:	07
		Load-1: 50W, 24V light load which runs for 14hrs during night time.	
		Load-2: 96W, 24V water pump runs twice a day (once before sunrise and once during	
		day). Each time the pump runs for 2hrs.	
		Load-3: 40W, 24V fan load which runs for 24hrs.	
		Design the battery size (Ah) that should be installed at the location. (Consider night	
		load duration=14hrs, battery efficiency=0.7, Depth of discharge = 60% and days of	
		autonomy(Sunlight and hence PV power not available)=1, PV module efficiency is	
		16%, Hatmin=4.57 kwh/sq.mt/day)	
		OR	
Q.3	(a)	A PV panel delivers maximum power of 1kW at 200V. The efficiency of the panel is	03
	(44)	20%. Assuming standard conditions, What is the area of the PV panel in square	00
		meter?	
	(b)	Define 1) Azimuth angle 2) Latitude angle 3) longitude angle 4) Zenith angle	04
	(c)	Is buck converter capable of tracking entire I-V characteristics of a PV panel? Justify	07
	(0)	your answer.	0.
Q.4	(a)	Write the grid code requirements for renewable energy integration to utility grid.	03
	(b)	Draw the control block diagram of grid connected PV system being controlled in d-	04
	()	q reference frame	
	(c)	Draw and explain perturbed and observe MPPT algorithm.	07
	` '	OR	
Q.4	(a)	Explain the fault ride-through for wind farms in brief.	03
	(b)	Draw the control block diagram of standalone PV system	04
	(c)	Draw and explain incremental conductance MPPT algorithm.	07
Q.5	(a)	Explain solar cooker with a neat sketch.	03
	(b)	List types of concentrating solar collector and explain any two in brief.	04
	(c)	Explain Solar Refrigeration and Air Conditioning in detail.	07
		OR	
Q.5	(a)	Explain solar water heater with a neat sketch.	03
	(b)	Write a brief note on passive solar heating	04
	(c)	Explain solar pond in detail	07
