GUJARAT TECHNOLOGICAL UNIVERSITY **BE- SEMESTER-VII (NEW) EXAMINATION – WINTER 2024** Subject Code:3170923 Date:19-11-2024 **Subject Name: Electrical and Hybrid Vehicle** Time:10:30 AM TO 01:00 PM Total Marks:70 ## **Instructions:** - 1. Attempt all questions. - 2. Make suitable assumptions wherever necessary. - 3. Figures to the right indicate full marks. - 4. Simple and non-programmable scientific calculators are allowed. | | | | Marks | |------------|------------|--|-------| | Q.1 | (a) | What is the need and importance of electric and hybrid electric vehicles? | 03 | | | (b) | With the help of a neat block diagram explain different subsystems of electric drive train. | 04 | | | (c) | Derive equations & explain different types of forces acting on vehicle going uphill with neat diagram. | 07 | | Q.2 | (a) | Compare hybrid electric vehicles with conventional vehicles. | 03 | | | (b) | Write two merits and two demerits of electric vehicles. | 04 | | | (c) | Draw and explain architecture and power flow control of parallel hybrid electric drive train. OR | 07 | | | (c) | (i)Compute aerodynamic drag, rolling resistance & gradient force for the following vehicle assuming ρ =1.2 kg/m³ & θ = 8°. Gross vehicle weight = 1500 kg, C _D =0.3, Area = 2.5 m², μ =0.015, v = 80 kmph, Tyre radius = 0.3 m. | 07 | | | | (ii) Also compute total traction force assuming pick-up from 0 to 50 kmph in 20 sec, with linear acceleration & zero slope. | | | Q.3 | (a) | What is plug-in HEV? Explain with figure. | 03 | | | (b) | What is meant by (i) Series hybrid electric vehicle. (ii) Parallel hybrid electric vehicle. | 04 | | | (c) | Define the terms charge capacity, specific energy, energy density, specific power, charge efficiency, energy efficiency, Life cycle of battery. | 07 | | | | OR | | | Q.3 | (a) | Give comparisons of Hybrid Electric Vehicles and Conventional Vehicles | 03 | | | (b) | List the various components of HEV drive train. Mention the advantages of hybrid vehicles. | 04 | | | (c) | With neat diagram explain the construction and working of lead-acid battery. | 07 | | Q.4 | (a) | Classify the electric motors drives for EV and HEV application. | 03 | | | (b) | List the optimization based strategies in Hybrid Electrical Vehicles? | 04 | | | (c) | Explain the basic principle of Super Capacitors based Energy Storage System in Hybrid Electric Vehicles? | 07 | | | | OR | | | Q.4 | (a) | What is the advantage of AC motor over DC motors for EV applications? | 03 | | | (b) | Give a classification of different energy management strategies. | 04 | | | (c) | Explain the fuel cell and flywheel as energy source elements in electric and Hybrid electric vehicles. | 07 | | (a) | List the various components of HEV drive train. | 03 | |------------|--|---| | (b) | Briefly explain construction and working of Switched Reluctance Motor. | 04 | | (c) | Discuss various electric drive train topologies. | 07 | | | OR | | | (a) | Which types of qualities are required in electric motors for EV application? | 03 | | (b) | Draw only torque-speed characteristics of following motors. (1) DC Shunt Motor (2) | 04 | | | Permanent Magnet Synchronous Motor (PMSM) (3) Switched Reluctance Motor (SRM) | | | | (4) Permanent Magnet Brushless DC Motor (PMBLDC). | | | (c) | Explain the two-quadrant operation of chopper DC motor drive with suitable waveforms | 07 | | | for electric vehicle. | | | | (b)
(c)
(a)
(b) | (c) Discuss various electric drive train topologies. OR (a) Which types of qualities are required in electric motors for EV application? (b) Draw only torque-speed characteristics of following motors. (1) DC Shunt Motor (2) Permanent Magnet Synchronous Motor (PMSM) (3) Switched Reluctance Motor (SRM) (4) Permanent Magnet Brushless DC Motor (PMBLDC). (c) Explain the two-quadrant operation of chopper DC motor drive with suitable waveforms | *****