GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII (NEW) EXAMINATION – WINTER 2024

11-12-202	24
ļ	11-12-202

Subject Name: Power System Dynamics and Control

Time:10:30 AM TO 01:00 PM	Total Marks:70
---------------------------	----------------

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

		4. Simple and non-programmable scientific calculators are allowed.	Mark
Q.1	(a)	Write the advantages of using per unit system for modelling of synchronous machine.	03
	(b)	Define steady state stability and transient stability.	04
	(c)	With the help of a neat block diagram, explain different operating states of a typical power system network.	07
Q.2	(a)	What is the primary objective of studying power system dynamics?	03
	(b)	State the assumptions made in classical model of the synchronous generator in steady state stability analysis.	04
	(c)	Derive the swing equation of a single generator connected to infinite bus in per unit form.	07
		OR	
	(c)	Draw general functional block diagram of an excitation control system and explain the function of each block.	07
Q.3	(a)	Discuss with reasons: Load are modelled as constant impedance in stability studies.	03
	(b)	Briefly discuss short circuit tests of synchronous machine.	04
	(c)	Explain the equal area criterion for single machine infinite bus system with the help of power angle curves.	07
		OR	
Q.3	(a)	What is meant by speed governing system?	03
	(b)	Explain power invariant form of park's transformation.	04
	(c)	Explain general model for speed governor for steam turbine using neat block diagram.	07
Q.4	(a)	Sketch the schematic representation of a three-phase synchronous generator.	03
	(b)	Explain modelling of transmission network using π equivalent circuit.	04
	(c)	Briefly explain Park's transformation and mention its importance for power system modeling and analysis.	07
		OR	
Q.4	(a)	What is the basic function of power system stabilizer?	03
	(b)	Express the stator voltage equation in dq-axis.	04
	(c)	Explain the static load representation in electrical power systems, incorporating its mathematical formulation.	07
Q.5	(a)	State the assumptions made in derivation of the basic equation of a synchronous machine.	03
	(b)	List various models of synchronous machine based on the windings used in dq-axis.	04
	(c)	Explain the steps for calculating initial conditions of a synchronous generator with phasor diagram.	07

OR

Q.5	(a)	What are the types of excitation systems?	03
	(b)	What specific base quantities are typically selected for the per unit conversion of	04
		stator dq-winding quantities in synchronous machines?	
	(c)	Explain transmission line modeling by D-Q transformation using α - β variables.	07
