GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - SUMMER 2024

Subject Code:3170915 Date:30-05-2024

Subject I	Name:Power	System	Dynamics	and	Control

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	4.	Simple and non-programmable scientific calculators are allowed.	
			Marks
Q.1	(a)	What do you mean by power system dynamics? State the advantages of power system dynamic analysis.	03
	(b)	·	04
	(c)	•	07
Q.2	(a)	Give the classification of power system stability studies and briefly explain the voltage stability analysis.	03
	(b)	Explain the necessary assumptions made in the classical model of the synchronous generator for steady-state stability analysis.	04
	(c)	Analyze the power system steady-state stability and discuss the concept of eigenvalue.	07
		OR	
	(c)	With the help of a neat and clean block diagram, explain the different operating states of a typical power system network.	07
Q.3	(a)	What is Park's transformation? Discuss the advantages of this transformation.	03
	(b)		04
	(c)	Define per unit system and obtain the per unit values of a power system network components from their rated values. OR	07
Q.3	(a)	Why the excitation system is required? Give the classification of excitation systems.	03
	(b)	•	04
	(c)	Draw a general functional block diagram of an excitation control system and explain the function of each block.	07
Q.4	(a)	report published in 1986.	03
	(b)	What are the various data required for synchronous machines? Discuss the tests	04

(c) Discuss in detail the application of synchronous generator Model 1.1 as

performed on synchronous machines to obtain such data.

suggested by the IEEE Task Force.

07

Q.4	4 (a) What is the compensation of a transmission line? Which compensation (so or shunt) is suitable for a transmission line? Justify your answer.		ries 03	
	(b)	List the methods of static VAR compensations (SVCs). Explain to anyone in detail.	04	
	(c)	Discuss in detail the control characteristic of SVC.	07	
Q.5	(a)	What is a Power System Stabilizer (PSS)? Discuss the need for using PSS for dynamic studies.	03	
	(b)	Discuss in detail the use of HVDC links and static VAR controllers (SVCs) for power system stabilization.	04	
	(c)	Explain transmission line modelling by D-Q transformation using α - β variables.	07	
		OR		
Q.5	(a)	Why load is considered as a constant impedance model?	03	
	(b)	Explain polynomial and exponential representation of static load.	04	
	(c)	Explain in detail any two sub-synchronous resonance (SSR) mitigation techniques.	07	
