GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI EXAMINATION - SUMMER 2025

Subject Code: 3160704 Date: 20-05-2025

Subject Name: Theory of Computation

Time: 10:30 AM TO 01:00 PM **Total Marks:70**

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

M

- **Q.1** (a) Differentiate between constructive proofs and proofs using contradiction with 03 examples.
 - 04 (b) Write the Strong Principle of Mathematical Induction and prove that for any integer $n \ge 2$, n is either a prime or a product of two or more primes.
 - (c) Explain the importance of distinguishable strings and equivalent classes' w.r.t. 07 regular languages.
- Q.2 (a) Define Pushdown Automata.

- 03 04
- **(b)** Explain the idea of Finite State Machines with examples.

- 07
- Apply the subset construction technique and draw the FA accepting the same language represented by given NFA.

OR

- **07** Convert the given regular expression to its equivalent NFA-λ. $r = 1 + (101)^* 0 + 01 (01)^* + 11 (101)^* + 00 (11)^*$
- Construct a Finite Automata that accepts all strings over {0,1}* NOT containing the 03 Q.3 (a) sub-string 101.
 - Show what languages are generate by the given context free grammar in each case. 04
 - 1. $S \rightarrow aSb \mid bSa \mid$
 - 2. $S \rightarrow SS \mid bS \mid a \lambda$
 - (c) Construct the CFG for the language $L = \{x \in \{0,1\}^* \mid n_0(x) \neq n_1(x)\}.$ **07**

Q.3	(a) (b)	Show that the language pal of palindrome is not regular. Find CFG generating the language of even-length strings in $\{a, b\}^*$ with the two middle symbols equal.	03 04
	(c)	Apply the rules and show step by step conversion of the following grammar to CNF. $S \to ABCBCDA$ $A \to CD$ $B \to Cb$ $C \to a \mid \lambda$ $D \to bD \mid \lambda$	07
Q.4	(a)	Explain the pumping lemma for context free languages.	03
	(b)	Explain unambiguous grammar with an example of converting ambiguous grammar to unambiguous.	04
	(c)	Apply the rules and step by step create a Turing Machine to accept $\{a,b\}^*\{aba\}$ OR	07
Q.4	(a)	Explain Ogden's Lemma.	03
	(b)	Discuss the decision problems involving CFL.	04
	(c)	Construct a Turing machine to accept the strings $x.x^{rev}$	07
Q.5	(a)	Explain the halting problem?	03
	(b)	Discuss the Chomsky hierarchy.	04
	(c)	Define and explain the working of Turing Machines.	07
		OR	
Q.5	(a)	Explain the difference between decidability and acceptability of a language with respect to TM?	03
	(b)	Explain Context-Sensitive Grammars and give example of a context-sensitive language.	04
	(c)	Discuss the summary of Church – Turing thesis.	07
