C AN	T 1 / M
Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION – SUMMER 2024

Subject Code: 3150502 Date:21-05-2024

Subject Name: Mechanical Operations

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- Q.1 (a) Define (a) Mesh number (b) Screen Effectiveness (c) Statistical diameter of particle.

 (b) Differentiate between differential analysis and cumulative 04

 (c) A quartz mixture having a certain screen analysis through a standard 10 mesh screen.

 Calculate (a) the mass ratio of overflow and underflow to feed and (b) the effectiveness of the screen.

 Data: $D_P = D_{PC} = 1.651$ mm, $x_U = x_B = 0.195$ (mass fraction of A in underflow) (cumulative mass fraction), $x_F = 0.47$ (Mass fraction of A in feed), $x_O = x_D = 0.85$ (mass fraction of A in overflow)
- Q.2 (a) Differentiate between dry grinding and wet grinding.
 - (b) Calculate the sphericity of rectangular prism of dimension
 a x b x c for criteria a = b, c = 2a.
 - (c) Write a short note on "Vibrating screen and its importance".

OR

- (c) A material is crushed in a jaw crusher and an average size of the particle reduced from 5 cm to 1 cm with the consumption of energy of 1.32 x 10⁴ J/kg. Determine the consumption of energy to crush the same material of an average size 7.5 cm to 2.5 cm by assuming (a) Rittinger's law (b) Kick's law.
- Q.3 (a) Derive the expression for critical speed of a ball mill.
 - (b) The energy required per unit mass to grind limestone particles of very large size to 100 μm is 12.7 kWh/ton. Determine the estimated amount of energy to grind the particles from a very large size to 50 μm.

07

	(c)	Classify the size reduction equipment's according to their usage	07
		and give examples in each category.	
		OR	
Q.3	(a)	Define size enlargement process and its importance.	03
	(b)	Differentiate between blake jaw crusher and dodge jaw crusher.	04
	(c)	Explain and differentiate open and closed circuit operation for size	07
		reduction of solid with neat schematic diagram.	
Q.4	(a)	Enlist the applications of fluidization.	03
	(b)	Define filter aids and their importance.	04
	(c)	A tube of 0.05 m ² cross sectional area is packed with spherical	07
		particles up to a height of 0.25 m. The porosity of the bed is 0.35. It	
		is desired to fluidize the particles with water. Determine the	
		minimum fluidization velocity using Ergun's equation.	
		Data: Density = 1000 kg/m^3 and viscosity = 10^{-3} pa. sec.	
		Diameter of particle = 0.01 m and particle density = 2600 kg/m^3	
		$\frac{\Delta P}{L} = \frac{1.75 \overline{V}_{0M}^2 \left(1 - \epsilon\right) \rho}{\Phi_S D_P \epsilon^3} + \frac{150 \mu \overline{V}_{0M} \left(1 - \epsilon\right)^2}{\Phi_S^2 D_P^2 \epsilon^3}$	
		OR	
Q.4	(a)	Define cake resistance and filter medium resistance.	03
	(b)	Define pneumatic conveying and its applications.	04
	(c)	With neat and clean diagram explain, Batch sedimentation process	07
		in detail.	
Q.5	(a)	Enlist the various types of propellers.	03
	(b)	Write a short note on washing of filter cakes.	04
	(c)	Explain in detail with neat and clean diagram. "Basket centrifuge"	07
		OR	
Q.5	(a)	Define, "Power number and its significance"	03
	(b)	Discuss the important features of cyclone separator.	04

(c) Discuss in detail. "Classification of turbine"

07