Subject Code:3160512

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI EXAMINATION - SUMMER 2025

Date:30-05-2025

	Tin	bject Name:Biochemical Engineering ne:10:30 AM TO 01:00 PM Total Marks:70 ructions:)
	Hist	 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 	
		4. Simple and non-programmable scientific calculators are allowed.	MARKS
Q.1	(a)	Distinguish between bioprocess engineering and biochemical engineering.	03
	(b)	For animal and plant cells, mention the following differences: 1. Cell wall 2. Chloroplast 3. Vacuoles 4. Endoplasmic reticulum	04
	(c)	List out procedures involved in the separation and purification of intracellular enzymes. Tabulate the unit operations and their range for recovery and purification of products based on: 1. Size 2. Diffusivity 3. Surface activity 4. Density.	07
Q.2	(a) (b)	State the role of chelator, buffer and antifoam in the microbiological process. Classify protein based on its structure. What is the function of transport protein?	03 04
	(c)	Define and write chemical reactions for the synthesis of: 1. Fat 2. Sucrose 3. Amylose	07
		OR	
	(c)	What is the denaturation of protein? List out the five major biological functions of proteins.	07
Q.3	(a)	List out physical methods adopted for immobilization of enzymes. What are the advantages and disadvantages of it compared to free enzyme?	03
	(b)	What is the effect of temperature, pH and concentration of substrate on enzyme activity?	04
	(c)	A substrate is converted to a product by the catalytic action of an enzyme. Assume that the Michaelis-Menten kinetic parameters for this enzyme reaction are: $K_M = 0.03 \text{ mol/L}$ $r_{max} = 13 \text{ mol/L.min}$ a. What should be the size of a steady-state CSTR to convert 95% of incoming substrate $C_{S0} = 10 \text{ mol/L}$) with a flow rate of 10L/hr b. What should be the size of the reactor if a plug flow reactor is used instead of the CSTR in part (a)? \mathbf{OR}	07
Q.3	(a)	Write assumptions involved in enzyme kinetics for the Michaelis-Menten approach.	03
٠.٠	(b)	Differentiate between competitive and noncompetitive inhibition of enzymes.	04

(c) The initial reaction rate of hydrolysis of acetylcholine (substrate) by dog serum (source of enzyme) and obtained the following data:

Substate Concentration,	Initial Reaction Rate,			
mol/L	mol/L.min			
0.0032	0.111			
0.0049	0.148			
0.0062	0.143			
0.0080	0.166			
0.0095	0.200			

Evaluate the Michaelis-Menten kinetic parameters by employing

- (a) the Langmuir plot
- (b) the Lineweaver-Burk plot
- (c) the Eadie-Hofstee plot
- **O.4** (a) Define the following:
 - 1. Cultivation
 - 2. Inoculation
 - 3. Sterilization
 - (b) Discuss the use of a valve and steam trap in the fermentation unit.
 - (c) Aerobic degradation of benzoic acid by a mixed culture of microorganisms can be represented by

$$C_6H_5COOH + a O_2 + b NH_3 \longrightarrow c C_5H_7NO_2 + d H_2O + e CO_2$$

(substrate) (bacteria)

- **a.** Determine a, b, c, d, and e if respiratory quotient RQ = 0.9.
- **b.** Determine the yield coefficients, $Y_{X/S}$ and $Y_{X/O2}$.

OR

- Q.4 (a) How mass transfer limitations in bioreactors are prevented? List out the variant of it.
 - **(b)** What are the limitations of batch reactors for microbial growth? How fed-batch reactor is advantageous for it?
 - (c) Disuses sodium sulfite method for oxygen absorption rate. A fermenter was filled with 10 L of 0.5 M sodium sulfite solution containing 0.003 M Cu $^{++}$ ion and the air sparger was turned on. After 10 minutes, the airflow stopped and a 10 mL sample was taken and titrated. The concentration of the sodium sulfite in the sample was found to be 0.21 mol/L. The experiment was carried out at 25°C and 1 atm. Calculate the oxygen uptake and K_{La} .
- **Q.5** (a) What is foaming in a bioreactor? What are the adverse impacts of it? How it can be prevented?
 - (b) List out the source of probable contamination generation in a bioreactor. How can it be prevented?
 - (c) Sketch a single stirred tank reactor and write a cell and substrate mass balance. Derive an expression for dilution rate.

OR

- Q.5 (a) List out the methods used for the separation of soluble products.
 - (b) Write about ultrafiltration and microfiltration methods. 04
 - (c) What is Chromatography? Discuss the various types of chromatography methods used for product separation and recovery.

07

03

04

07

03

04

07

03

07

03