GUJARAT TECHNOLOGICAL UNIVERSITY

Subi	ect (BE - SEMESTER-VI(NEW) EXAMINATION – WINTER 2022 Code:3160506 Date:14-12		
Subject Name: Chemical Reactions Engineering I Time: 02:30 PM TO 05:00 PM Instructions: Total Marks				
insti u	1. 2.		MADWG	
Q.1	(a) (b) (c)	Discuss the variables affecting the rate of reaction.	03 04 07	
Q.2	(a)	Define space time, space velocity& mean residence time.	03	
	(b)	Discuss in detail about Integral method and Half life Method.	04	
	(c)	system and establish the relation used to calculate the partial pressure of gaseous component in reaction mixture.	07	
	(c)	OR Show that	07	
		$\ln \frac{M - X_A}{M (1 - X_A)} = C_{A0} (M - 1) k t, M \pm 1$ for second order irreversible bimolecular type reaction $A + B \longrightarrow \text{Products with different concentration of reactants A and B.}$		
Q.3	(a)	State the points to be considered to find the size of reactor required for given duty and for a given temperature progression	03	
	(b)	Discuss method of maximization of rectangles applied to find the optimum intermediate conversion and optimum sizes of two mixed flow reactors in series.	04	
	(c)		07	
Q.3	(a)	Discuss fractional yield, overall yield and selectivity for parallel reaction	03	
	(b)	Discuss autocatalytic reaction with conversion-time and rate concentration Curves.	04	
	(c)		07	
Q.4	(a) (b)	•	03 04	

	(c)	equation. Discuss in detailed about product distribution for parallel	07
		reaction. OR	
0.4	(-)		0
Q.4	(a)	Define zero order reaction with suitable example.	03 04
	(b)	Define Overall Fractional yield and Instantaneous fractional yield for the decomposition of A into product R.	U ²
	(c)	First order unimolecular irreversible reaction in series	07
		$A \longrightarrow R \longrightarrow S$ takes place with specific reaction rate k1 and k2. Express the variation of concentration of A, R and S with time. Find the expression for the time when formation of R becomes maximum.	
Q.5	(a)	Define Residence Time Distribution and explain E-Curve.	03
	(b)	A closed vessel has flow for which dispersion number is 0.3. We wish	04
		to represent this vessel by tanks in series model. What value of number of tanks should be selected?	
	(c)	Write a short note on equilibrium constants from thermodynamics	07
		clearly indicating the equations.	
		OR	
Q.5	(a)	List out characteristics of good tracer	03
	(b)	From the first principle prove that for a back mix reactor	04
		(i) $E\theta = e^{-\theta}$ and (ii) $F\theta = 1 - e^{-\theta}$	
	(c)	Find out relation between conversion and temperature	07
		(a) Between 0 °C and 100 °C determine the equilibrium conversion of A	
		for the aqueous reaction	
		A ←→ B	
		$\Delta G^{o}_{298} = -3375 \text{ cal/mol}; \Delta H^{o}_{r,298} = -18,000 \text{ cal/mol}$	
		Plot a graph between conversion and temperature.	
		(b) What the restrictions should be placed on a reactor operating	
		isothermally if we have to obtain fractional conversion of 75% or higher?	
