GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VI EXAMINATION - SUMMER 2025

Subject Code:3160506 Date:22-05-2025

Subject Name: Chemical Reactions Engineering I

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

											MARKS	
Q.1	(a)	(a) Define rate constant with its significance.								03		
	(b)										04	
	(c)	fluid solid system. Derive performance equation for steady state plug flow reactor.									07	
	. ,	(c) Francisco - American State Francisco - Constant										
Q.2	(a)	Derive equation for a unimolecular type first order reaction for constant volume batch reactor using integral method.									03	
	(b)) Give brief about shifting order reaction.									04 07	
	(c)	<u>.</u>										
	(c)	OR e) For the decomposition $A \rightarrow R$, $C_{A0} = 1$ mol/liter, in a batch reactor										
	(C)	For the decomposition $A \rightarrow R$, $C_{A0} = 1$ mol/liter, in a batch reactor conversion is 75% after 1 hour, and is just complete after 2 hours. Find a rate equation to represent this kinetics.										
Q.3	(a)	Write in brief about va	ariał	oles affe	ecting ra	ate of re	actions				03	
	(b)	(b) Discuss about various types of nonideality exists in different reactors.(c) Derive the equation for half life using overall order of irreversible reaction.										
	(c)											
Q.3	(a)	The concentration res	din	ac in T	OR	nracant	a conti	nuoue	racnone	a to a	03	
Q.S	(a)	The concentration readings in Table represent a continuous response to a pulse input into a closed vessel which is to be used as a chemical reactor.									03	
		Calculate the mean res										
		Time, t min	0	5	10	15	20	25	30	35		
		Tracer output conc.	0	3	5	5	4	2	1	0		
		C pulse, gm /liter										
	(b)	Discuss autocatalytic	reac	tion wit	th conv	ersion-t	ime and	l rate-co	oncentr	ation	04	
	(a)	Curves.		tuma mma	~~~~	مل منام	-a:1				07	
	(c)	Discuss optimum tem	рега	ture pro	gressic	m m dei	an.				U/	
Q.4	(a) Discuss parallel reactions with examples.										03	
	(b)	Milk is pasteurized if									04	
		74°C it only needs 15		for the	same 1	esult. F	ind the	activat	ion ene	ergy of		
	(c)	this sterilization proce Derive performance ed		ion for	cteady	state ide	al hatel	h reacto	r		07	
	(C)	Derive performance of	quai	1011 101	OR	state ruc	ai vaic	ii icacic	л.		07	
Q.4	(a)	021)W	03		
	(b)	Show the graphical reoperation.	pres	entatior	n of ene	rgy bala	ance eq	uation 1	for adia	batic	04	

	(c)	Explain tracer experiment with equations for pulse response in non-ideal flow reactor with equations and curves.	07		
Q.5	(a)	Define: Conversion, yield, space time.			
	(b)	Explain differential method of analysis to find rate of reaction.			
	(c)	 Discuss qualitative product distribution for irreversible first order reaction in series. 			
		OR			
Q.5	(a)	Explain selectivity with its equation.			
	(b)	Discuss about different size of mixed flow reactors in series.			
	(c)	Differentiate between contacting patterns in continuous flow operations and noncontinuous operations for various combination of high and low concentration of reactants for maximizing the desired product.	07		
