Seat No.:	Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

BE – SEMESTER- VII EXAMINATION-SUMMER 2023

Subject Code: 3170501 Date: 27/06/2023

Subject Name: Chemical Reactions Engineering II

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.
- Q.1 (a) Enlist three examples for both catalytic heterogeneous reactions & noncatalytic heterogeneous reactions
 - (b) Discuss with neat sketch about the solid particle and concentration. **04** profile of solid reactant-unchanging size-shrinking model of unreacted core.
 - (c) Gaseous reactant A diffuses through a gas film and reacts on the surface 07 of a solid according to a reversible first-order rate,

$$-r_A$$
"=k"(C_{As} - C_{Ae}) mol/m².sec

Where C_{Ae} , is the concentration of A in equilibrium with the solid surface. Develop an expression for the rate of reaction of A accounting for both the mass transfer and reaction steps.

- Q.2 (a) Define: Catalyst Promoters, Catalyst Inhibitors, Catalyst Poisons 03
 - (b) (i) If $\tau/t=1/3$, Find out average conversion for a particle B of constant size in a mixed flow reactor for chemical reaction controlling.
 - (ii) Which of the following constants is a type of equilibrium constant?
 - a) Association constant b) Solubility
 - c) Decay constant d) Dissociation constant
 - (c) Calculate the time needed to burn to completion the particles of graphite (diameter of particle=12 mm, ρ_B = 2.2 gm/cm3, ks= 25 cm/sec) in a 10% oxygen stream. For the higher gas velocity used assume that film diffusion does not offer any resistance to transfer and reaction. The reaction temperature is 900°C.

OR

(c) In a uniform environment 4 mm solid particles are 87.5% converted to product in 5 min. The solids are unchanged in size during reaction and ash diffusion step is known to be rate controlling. What mean conversion is obtainable in a fluidized bed reactor operating with

07

same environment but using feed consisting of equal mass of 2 mm and 1 mm particles? The mean residence time of solids in this reactor is 30 minutes.

Q.3	(a)	What are the carriers or support used and why they are used with catalyst?	03
		Name the three categories of Industrial catalysts.	
	(b)	Name the methods of preparing solid catalyst. Discuss any one method in	04
		detail.	
	(c)	For kinetics of fluid-solid catalytic reaction, write about "Adsorption	07
		isotherm".	
		OR	
	(a)	Discuss the spectrum of kinetic regimes for porous catalyst surrounded by a reactant.	03
	(b)	Develop the overall rate expression for gas phase heterogeneous reaction :	04
		A → M+N, considering the following steps:	
		(i) Adsorption of A (ii) Surface reactions between adsorbed A and adjacent	
		sites to produced adsorbed M & N.(iii) Desorption of M & N.	
		Assume step (ii) is rate controlling step.	
	(c)	Discuss about the surface area determination of catalysts by nitrogen	07
		desorption method.	
Q.4	(a)	Give the significance of Hatta modulus in fluid – fluid reaction.	03
	(b)	Derive the rate equation for fast reaction with low concentration of	04
		liquid reactant in fluid – fluid reaction.	
	(c)	What is film conversion parameter? State various criteria of it which is	07
		used in the study of fluid-fluid reactions.	
		OR	
Q.4	(a)	Discuss the importance of solubility data for determination of kinetic	03
		regime for fluid – fluid reaction.	
	(b)	Sketch the concentration profile for the gas-solid non-catalytic reaction in	04
		which the resistance through the ash layer is rate controlling.	
	(c)	Gaseous A absorbs and reacts with B in liquid according to	07
		$A(g \rightarrow l) + B(l) \rightarrow R(l)$, $-r_{Al} = kC_AC_B$ in packed bed.	
		(i) Calculate the rate of reaction. (ii) Determine location of major	
		resistance (gas film, liquid film, bulk liquid) and behavior in liquid film	
		at a point in the reactor where $P_A=100\ Pa$ and $C_B=100\ mol/m^3$ liquid.	
		Data: k=10 ⁸ m ³ liquid/mol.h, H _A =1.0 pa.m ³ /mol,	

$$\begin{split} k_{Aga}=&0.10~mol/h.m^3.pa,~~k_{Al~a}=&100~m^3liquid/m^3reactor.h\\ f_l=&0.01~m^3liquid/m^3,~a=&100~m^2liquid/m^3reactor\\ D_{Al}=&~D_{Bl}=&10^{-6}~m^2/h. \end{split}$$

Q.5	(a)	List out steps involved in solid catalyzed fluid phase reactions in converting	03
		reactants to products.	
	(b)	Write a short note on Slurry reactors.	04
	(c)	Justify: For given treatment rate, the conversion of a reacting fluid,	07
		flowing through a batch of deactivating catalyst, decreases with time	
		during the run.	
		OR	
Q.5 (a)	(a)	Answer the following in brief.	03
		(i) Effectiveness factor (ii) Pore diffusion Resistance (iii) Thiele modulus	
	(b)	Write a short note on Langmuir-Hinshelwood-Hougen-Watson kinetic	04
		model.	
	(c)	Derive the Performance Equations for Plug flow Reactor containing porous	07
		catalysts.	