GUJARAT TECHNOLOGICAL UNIVERSITY **BE- SEMESTER-VII (NEW) EXAMINATION – WINTER 2024** Subject Code:3170507 Date:19-11-2024 **Subject Name: Computer Aided Process Synthesis** Time:10:30 AM TO 01:00 PM Total Marks:70 ## **Instructions:** - 1. Attempt all questions. - 2. Make suitable assumptions wherever necessary. - 3. Figures to the right indicate full marks. - 4. Simple and non-programmable scientific calculators are allowed. | | | | | | | Marks | |-----|--|--|----------------------|----------------------|-----------------------------------|-------| | Q.1 | (a) | Briefly explain safety considerations and design approaches towards safe chemical plants. | | | | 03 | | | (b) | Explain the node ar | nd saddle point in t | he residue curve n | nap. | 04 | | | (c) | Explain Vapor Recenergy-saving alter | | | Heat Pumping as an r limitations. | 07 | | Q.2 | (a) | Briefly describe the role of computer programs useful in product and process design. | | | | 03 | | | (b) Explain reactor design for complex configurations. | | | | | 04 | | | (c) Write a short note on threshold and optimum approach temperatures for heat exchanger networks. | | | | 07 | | | | OR | | | | | | | | (c) | What is the pinch design approach for minimizing utility requirements? | | | | | | Q.3 | (a) | Discuss in detail th | e phase separation | of the reactor efflu | ient. | 03 | | | (b) | List the steps invol | - | | _ | 04 | | | (c) | Could you provide detailed instructions on how to split streams on both sides of the pinch to ensure compliance with MER criteria? | | | | | | | | - | = |)R | | | | Q.3 | (a) | (a) Write a short note on environmental factors in process design. | | | | 03 | | | (b) | List the statements of engineering ethics. | | | | 04 | | | (c) Apply the TI method and find the MER target for the following data and | | | | llowing data and | 07 | | | | Design HEN for the hot side of the pinch. Take ΔT min = 10 °C | | | | | | | | Stream | T ^{s o} C | T ^t °C | C (kW/°C) | | | | | H1 | 180 | 60 | 3 | | | | | H2 | 150 | 30 | 1 | | | | | C1 | 30 | 135 | 2 | | |] | H1 | 180 | 60 | 3 | |---|----|-----|-----|---| | J | H2 | 150 | 30 | 1 | | (| C1 | 30 | 135 | 2 | | (| C2 | 80 | 140 | 5 | Q.4 (a) Explain in detail common industrial separation methods. (b) Explain multi-effect distillation. (c) We have a mixture of four alcohols labeled as A, B, C, and D with flows in the feed of 1, 1, 3, and 5 mol/sec, respectively, for a total of 10 mol/sec and relative volatilities. The information about marginal vapour flows estimated for non-key species is as under. Find the best distillation-based separation sequence. | | A | В | С | D | |-----|-----|-----|----|----| | A/B | | | 26 | 30 | | B/C | 150 | | | 50 | | C/D | 80 | 100 | | | ## OR | Q.4 (a) Explain marginal vapor flows and show how it will be useful for predicting the best sequence of distillation columns. (b) Explain the positioning of heat engines relative to pinch. (c) Discuss the heuristics for determining the favorable sequence of distillation operation. Q.5 (a) Define: 1. Zero-Wait (ZW), 2. NO Intermediate storage (NIS) policy, 3 Unlimited Intermediate storage (UIS) policy (b) Differentiate Flowshop & Jobshop Plant (c) A given batch plant produces one single product for which stage 1 requires hours/batch, stage 2, 4 hours /batch, and stage 3, 7 hours/batch. If zero-wait transfer is used, what is the cycle time? How many parallel units should be placed in each stage to reduce the cycle time to 4 hours? OR Q.5 (a) Write the Thomson and King formula. (b) Compare overlapping and non-overlapping operations. (c) The processing times data for these products A and B are shown in the tables. | 03 | |--|----| | (c) Discuss the heuristics for determining the favorable sequence of distillatio operation. Q.5 (a) Define: 1. Zero-Wait (ZW), 2. NO Intermediate storage (NIS) policy, 3 Unlimited Intermediate storage (UIS) policy (b) Differentiate Flowshop & Jobshop Plant (c) A given batch plant produces one single product for which stage 1 requires hours/batch, stage 2, 4 hours /batch, and stage 3, 7 hours/batch. If zero-wat transfer is used, what is the cycle time? How many parallel units should be placed in each stage to reduce the cycle time to 4 hours? OR Q.5 (a) Write the Thomson and King formula. (b) Compare overlapping and non-overlapping operations. | | | Q.5 (a) Define: 1. Zero-Wait (ZW), 2. NO Intermediate storage (NIS) policy, 3 Unlimited Intermediate storage (UIS) policy (b) Differentiate Flowshop & Jobshop Plant (c) A given batch plant produces one single product for which stage 1 requires hours/batch, stage 2, 4 hours /batch, and stage 3, 7 hours/batch. If zero-war transfer is used, what is the cycle time? How many parallel units should be placed in each stage to reduce the cycle time to 4 hours? Q.5 (a) Write the Thomson and King formula. (b) Compare overlapping and non-overlapping operations. | 04 | | Unlimited Intermediate storage (UIS) policy (b) Differentiate Flowshop & Jobshop Plant (c) A given batch plant produces one single product for which stage 1 requires hours/batch, stage 2, 4 hours /batch, and stage 3, 7 hours/batch. If zero-wa transfer is used, what is the cycle time? How many parallel units should b placed in each stage to reduce the cycle time to 4 hours? OR Q.5 (a) Write the Thomson and King formula. (b) Compare overlapping and non-overlapping operations. | 07 | | (c) A given batch plant produces one single product for which stage 1 requires hours/batch, stage 2, 4 hours /batch, and stage 3, 7 hours/batch. If zero-war transfer is used, what is the cycle time? How many parallel units should be placed in each stage to reduce the cycle time to 4 hours? OR Q.5 (a) Write the Thomson and King formula. (b) Compare overlapping and non-overlapping operations. | 03 | | hours/batch, stage 2, 4 hours /batch, and stage 3, 7 hours/batch. If zero-way transfer is used, what is the cycle time? How many parallel units should be placed in each stage to reduce the cycle time to 4 hours? OR Q.5 (a) Write the Thomson and King formula. (b) Compare overlapping and non-overlapping operations. | 04 | | Q.5 (a) Write the Thomson and King formula.(b) Compare overlapping and non-overlapping operations. | 07 | | (b) Compare overlapping and non-overlapping operations. | | | | 03 | | (c) The processing times data for these products A and B are shown in the table | 04 | | Determine with a Gantt Chart the makespan and cycle time for manufacturin one batch of A and B for the following cases: No intermediate storage (NIS and Unlimited intermediate storage (UIS). | 07 | | Processing Times (hr) | | | | | |-----------------------|---------|---------|---------|--| | | Stage 1 | Stage 2 | Stage 3 | | | A | 6 | 4 | 3 | | | В | 3 | 2 | 2 | | | Zero Cleanup Times | | | | | ******