GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII EXAMINATION – SUMMER 2025

Subject Code:3170507 Date:08-05-2025

Subject Name: Computer Aided Process Synthesis

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

								MARKS
Q.1	(a) (b)		statement "No	-	in process desi be passed acros	gn. ss the pinch for	minimum	03 04
	(c)	Explain the reactor des		procedure for	the construction	on of attainable	region for	07
Q.2	(a) Differentiate flow shop plant and job shop plant in batch operation.							03
	 (b) Describe the criteria for selection of separation methods. (c) Discuss in brief about design opportunities and general steps in product and process design. 							04
								07
		OR						
	(c)	Discuss in detail the various environmental factors to be considered in process design.						07
Q.3	(a)							03
	(b) Explain "threshold approach temperature" and "optimum approatemperature".							04
	(c)	<u> •</u>						
		pinch temperature = 413 K.						
			STREAM	T _{IN} (K)	T _{OUT} (K)	$MC_p(kW/K)$		
			H1	473	353	0.25		

STREAM	$T_{IN}(\mathbf{K})$	$T_{OUT}(K)$	$MC_p(kW/K)$
H1	473	353	0.25
H2	523	313	0.15
C1	413	503	0.3
C2	293	453	0.2

OR

- Q.3 (a) For stream matching to be feasible near pinch, justify that $FC_h \ge FC_c$ must be satisfied in the below pinch region.
 - (b) Enlist the steps in the Pinch Design Approach to inventing a Heat Exchange Network.
 - (c) Find out pinch point and minimum utility requirements by constructing the Grand Composite Curve for below mentioned stream data using $\Delta T_{min} = 10^{\circ}$ C.

STREAM	T_{IN} (°C)	T_{OUT} (°C)	$MC_p(kW/^{\circ}C)$
H1	180	40	2
H2	150	40	4
C1	60	180	3
C2	30	105	2.6

- 03 (a) Differentiate between overlapping and non-overlapping batch operations. 0.4 **(b)** Discuss Unlimited storage policy with example. 04 What is Gantt chart? Draw Gantt chart for the recipe AABC for Zero wait, No **07** intermediate storage and Unlimited storage transfer policies using the following processing times. **Product Processing times (h)** 5 4 3 A 3 2 В 3 C 4 3 4 Zero Cleanup Times OR 0.4 (a) Explain cycle time and makespan for a batch process with examples. 03 **(b)** Discuss Zero Wait storage policy with example. 04 Develop Gantt charts and find cycle time and makespan for single product **07** campaigns (AAABBB) and mixed product campaigns (ABABAB) considering Zero Wait transfer policy for the following batch data. **Product** Stage 1 Stage 2 Α 5 2 В 4 **Q.5** Sketch all possible distillation column sequences for the separation of a four-03 component system (A, B, C and D). (b) Discuss the concept of multi-effect distillation as possibility of energy 04 integration. Find the best distillation-based separation sequence for the following data of 07 marginal vapour flows for 5 component system. The components behave relatively ideally. Separation B C D \mathbf{E} A A/B 100 1 1 -B/C 1 1 1 C/D 1 100 1 D/E 100 1 OR 03
- **Q.5** (a) Construct three alternatives for the placement of heat engines with the background process.
 - (b) Explain heat integration in distillation column using vapor recompression and reboiler flashing.
 - (c) Rank the sequences to separate four components (A, B, C and D) using marginal vapor rate method using the following details:

Separation	Marginal vapour	Separation	Marginal vapour
	flows		flows
A/B	0	ABC/D	613
A/BC	163	B/C	0
A/BCD	340	B/CD	227
AB/C	231	BC/D	385
AB/CD	435	C/D	0
