GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII (NEW) EXAMINATION – WINTER 2024

Subject Code:3170514 Date:11-12-2024

Subject Name: Mechanical Design of Process equipments

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

	_	• 0	
			MARKS
Q.1	(a)	Define the terms (i)Ductility (ii) Elasticity (iii) Creep.	03
	(b)	Explain "Radiography test" for pressure vessels.	04
	(c)	Define the two most important stresses generated in a thin cylindrical shell and discuss the classification of the unfired pressure vessel as per IS -2825 .	07
Q.2	(a)	Discuss the term: Poisson's Ratio, Modulus of elasticity and Power number.	03
	(b)	What is design stress and factor of safety? Explain in brief.	04
	(c)	State and discuss the various types of flanges used in industries.	07
		OR	
	(c)	Discuss in detail about various types of static and rotary equipments used in industry.	07
Q.3	(a)	Discuss about mechanical design of Elliptical head.	03
	(b)	Discuss the various types of gaskets.	04
	(c)	Discuss the design steps for the calculation of tube side heat	07
		transfer coefficient and pressure drop.	
		OR	0.0
Q.3	(a)	With neat sketch show crown radius, knuckle radius and straight flange portion in Torispherical head.	03
	(b)	Discuss about mechanical design of Hemispherical head.	04
	(c)	Turbine agitators operating in a vessel of 1600 mm diameters is	07
		to be designed with the following data:	
		Internal design pressure = 5 kgf/cm ² Agitator diameter = 500 mm	
		Max. agitator RPM = 200	
		Liquid viscosity = 400 cP	
		Specific gravity of liquid = 1.2	
		Overhang length of shaft = 1300 mm No. of agitator blade = 6	
		Max. allowable Shear Stress in shaft $(f_s) = 550 \text{ kgf/cm}^2$	
		Modulus of Elasticity 'E = $1.95 \times 10^6 \text{ kgf/cm}^2$	
		Power number = 6 for $N_{Re} < 4500 = 4.5$ for $N_{Re} > 4500$	
		a) Calculate powers required & suggest suitable motor HPb) Calculate shaft diameter.	
Q.4	(a)	Explain Normal and Emergency venting for storage vessel.	03
٠	(b)	Discuss external floating roof storage tank.	04

	(c)	Examine the data given below to evaluate the requirement of compensation for the nozzle opening in a cylindrical shell. If compensation ring (Reinforcement pad) is required then find its dimensions and weight. Outside diameter of shell = 2 m Max. Working pressure within shell = 3.5 MN/m² Wall thickness for the shell = 0.05 m Corrosion allowance = 3 mm Joint efficiency = 1 (for shell and nozzle) Length of nozzle = 100 mm MOC of shell, nozzle and reinforcement pad = IS 2002 Density of IS 2002 = 7800 kg/m³, Allowable stress = 96 MN/m² O. D of nozzle (seamless) = 0.25 m, Nozzle wall thickness = 0.016 m	07
0.4	(-)	OR	02
Q.4	(a)	Discuss importance of sealing strips.	03 04
	(b) (c)	Discuss design steps of saddle support. Explain the design steps for the conical roof with structural	07
	(C)	support, With neat sketch.	U7
Q.5	(a)	Define Gasket seating stress and gasket factor.	03
	(b)	Explain briefly: Determination of shell thicknesses at various heights for tray tower in case of internal pressure applied.	04
	(c)	Discuss about heating systems and various types of jackets and coils used for the same.	07
		OR	
Q.5	(a)	Discuss (i) Tie rods (ii) Spacers (iii) expansion joints.	03
	(b)	Explain different types of fabrication technique used for fabrication of pressure vessel.	04
	(c)	Find the thickness of a straight cylindrical skirt support for	07
		distillation column based on following data.	
		Diameter of column = 2500 mm	
		Height of distillation column = 40 m Max. weight of vessel, its attachment & contents = 300000 kg	
		Diameter of skirt =2500 mm	
		Height of skirt $= 2500 \text{ mm}$	
		Wind Pressure Up to 20 m Height = 100 kgf//m ²	
		Wind pressure at the top of column =128.5 kgf//m ²	
		Material used for skirt support = IS 800 structural steel	
		Max. allowable tensile stress = 1400 kgf//cm ²	
		Max. allowable compressive stress = 666 kgf//cm ²	
		Max. allowable bending stress = 1575 kgf//cm ² Seismic coefficient =0.08	
		Joint Efficiency = 0.85	
		Minimum weight of empty vessel = 250000 kg	
