Seat No.:	E 1 4 NI -
Sear NO:	Enrolment No.
scat 110	Linding 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 2022	
Subj	ect (Code:3170514 Date:07-01-2	2023
Subj	ect l	Name:Mechanical Design of Process equipments	
Time	e:10	:30 AM TO 01:00 PM Total Mark	s:70
Instru	ction	ns:	
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	Marks
Q.1	(a)	Describe in brief about design pressure & design temperature.	03
~· -	(b)	Define (i) Toughness (ii) Fatigue (iii) Creep (iv) Poisson's ratio.	04
	, ,		07
	(c)	Enlist various types of fabrication techniques used in industries for the designing of equipment. Explain any one in detail.	U7
Q.2	(a)	Give full form of ANSI, TEMA and HTRI.	03
	(b)	Define Gasket, Gasket seating stress and Gasket factor.	04
	(c)	Discuss about different types of agitators and their selection criteria.	07
	(-)	OR Evaloin in brief chart classification on varied vessel or not IC 2025	07
	(c)	Explain in brief about classification on unfired vessel as per IS -2825 .	07
Q.3	(a)	Discuss stress vs strain curve.	03
	(b)	Describe various types of jackets and their selection criteria	04
	(c)	Discuss the design steps for the calculation of tube side heat transfer	07
		coefficient and pressure drop.	
		OR	
Q.3	(a)	What is design stress and factor of safety? Explain in brief.	03
	(b)	Discuss about design of Torispherical head.	04
	(c)	A Reactor of 800 mm inside diameter is covered with hemispherical head	07
		at the bottom. Inside working pressure is 75 kgf/cm ² (g) & working	
		temperature is 70 °C. Reactor is covered with plain jacket such that 75%	
		length of shell & bottom hemispherical head is covered with jacket. Cooling	
		water is circulated inside the jacket by pumping with a centrifugal pump having a shut off discharge pressure 6.0 kgf/cm ² (g). The hemispherical head	
		is fabricated from SA-516 Grade 70. The maximum allowable stress at	
		design temperature is 610 kgf/cm ² . Modulus of Elasticity of plate material	
		(E) = 193×10^3 N/mm ² . Poisson's ratio (μ) = 0.3, ρ = 7.83 gm/cm ³ , Joint	
		efficiency (J) = 0.85 . Take 3 mm corrosion allowance. Find: (i) thickness	
		of the head (ii) volume of head and (iii) weight of the fabricated head	
ΩA	(e)	Explain Normal and Emergency venting for storage vessel	03
Q.4	(a) (b)	Discuss about design of saddle support.	03
	(c)	Determine the total number of shell plates and plate thickness of a storage	07
	(0)	tank to store Phosphoric acid of 85% w/w for phosphoric acid plant having	07
		production capacity of 762.83 MT. Density of pure H ₃ PO ₄ is 1834 kg/m ³ .	
		Allowable stress of Monel is 170 MPa and D/H is 1.5. Corrosion allowance	
		is negligible.	

OR

Q.4	(a)	Discuss importance of sealing strips.	03
	(b)	Discuss external floating roof storage tank.	04
	(c)	Discuss the design steps for column supported conical roof.	07
Q.5	(a)	Discuss (i) Tie rods (ii) Spacers (iii) expansion joints.	03
	(b)	Explain tray support for vertical tall tower.	04
	(c)	Discuss the design steps for skirt support.	07
		OR	
Q.5		Determine the shell thickness for the entire tower height based on the	14
		following data.	
		Shell I.D – 3500 mm, Working temperature – 180 °C, Working pressure –	
		2 N/mm ² (g), Design temperature – 200 °C, Top disengagement space – 200	
		mm, Base chamber height – 3200 mm, Specific gravity of material – 7.7,	
		Permissible tensile stress – 95 N/mm ² , Insulation density – 7700 N/m ³ ,	
		Corrosion allowance -3 mm, Poisson's ratio (μ) = 0.3, Modulus of	
		Elasticity of plate material (E) = $1.93 \times 10^5 \text{ N/mm}^2$, Insulation thickness –	
		140 mm, Weight of top elliptical head – 2800 N, Weight of attachment	
		(pipes, ladders & platform) – 1600 N/mm^2 , Weight of column – $3 \times 10^6 \text{ N}$,	
		Weight of liquid and tray -900 N/m^2 , No. of trays -60 , Tray spacing -0.7	
		m. Neglect the stress created by eccentric and seismic load. Determine the	
		thickness of distillation column.	