GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII EXAMINATION – SUMMER 2025

Subject Code:3170509 Date:16-05-2025

Subject Name:Nanoscience and Technology

Time:02:30 PM TO 05:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS
Q.1	(a)	Define: Nano Science, Quantum dot, Grain boundary	03
C -	(b)	Justify why melting point is size dependent property?	04
	(c)	Explain in detail Top Down and Bottom up approach for synthesis of naomaterial.	07
Q.2	(a)	Briefly discuss the effect of size reduction on diffusivity.	03
	(b)	Differentiate Evaporation and Sputtering.	04
	(c)	Explain in detail Sol gel process for synthesis of nanoparticles. OR	07
	(c)	Differentiate SEM and TEM for characterization of nanoparticles.	07
Q.3	(a)	Classify Micelle.	03
	(b)	What factors influence the stability of an emulsion, and how can emulsifiers be used to improve stability?	04
	(c)	How does temperature affect the mechanical attrition process? Should the mill be operated under cryogenic conditions for certain materials?	07
0.0		OR	0.2
Q.3	(a)	Explain colloid.	03
	(b)	What are the mechanisms of flocculation and deflocculation in colloidal systems, and how can they be controlled?	04
	(c)	Explain in detail the mechanism of nano-crystallization during high-energy ball milling.	07
Q.4	(a)	What is X-ray diffraction, and how does it work?	03
	(b)	What are examples of reversible and irreversible self-assembly systems?	04
	(c)	What are the thermodynamic and kinetic factors that influence crystal growth? OR	07
Q.4	(a)	How do CNTs act as effective adsorbents for water purification and pollutant removal?	03
	(b)	Why is catalysis using micelles as "micro reactors" advantageous sometimes? When is it advantageous?	04
	(c)	Compare Atomic Force Microscopy and other imaging techniques.	07
Q.5	(a)	List out the applications of nanotechnology in Fuel cells.	03
	(b)	Discuss the DNA self assembly structure.	04
	(c)	Explain principal, working, construction and application of the Dynamic light Scattering.	07

OR

Q.5	(a)	List out the applications of Gold nanoparticles.	03
	(b)	What is the primary safety concerns associated with the handling of nano	04
		materials?	
	(c)	How does the surface area-to-volume ratio change as materials are reduced	07
		to the nanoscale, and why is this significant?	
