Seat No.:	Envolment No
Seat No	Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

		BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 20	22
Subj	ect	Code:3170515 Date:07-	-01-2023
•		Name:Piping Design	
•		:30 AM TO 01:00 PM Total M	arks·70
Instru			ai is. 70
III5ti u		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	
			MARKS
Q.1	(a)		03
	(b)	71 C	04
	(c)	Explain the selection criteria of material for pipe system	07
Q.2	(a)	Discuss the steps for determination of optimum pipe size.	03
	(b)		04
	(c)	1 11 0	07
		OR	
	(c)	· · · · · · · · · · · · · · · · · · ·	07
		The tank is at atmospheric pressure. Pressure at the end of discharge	
		line 345 kPa g. The discharge is 3.05 m above the pump centerline and	
		the suction lift is 1.22 m above the level of liquid in the tank. The	
		friction loss in suction line is 3.45 kPa and that in the discharge line is	
		37.9 kPa. The mechanical efficiency of the pump is 0.6. The density of	
		Hexane is 659 kg/m ³ and its vapour pressure at 37.8 °C is 33.71 kPa.	
		Calculate (1) (NPSH) _A (2) Power requirement by centrifugal pump.	
Q.3	(a)	Explain methods of pipe fabrication and its application.	03
	(b)	List various flowmeters and explain any one in detail.	04
	(c)	Explain pumps with broad classification and selection criteria	07
		OR	
Q.3	(a)	What is the use of Steam separators and steam traps?	03
	(b)	Estimate the optimum pipe diameter for a flow of dry chlorine gas of	04
		10000 Kg/h at 6.5 atm and 18°C through carbon steel pipe.	
	(c)	Discuss types of valves and its applications in the industry.	07
Q.4	(a)	What is 'water hammer' in process plant?	03
	(b)	Explain the importance of design pressure and temperature for piping	04
		system.	
	(c)	Discuss the Lockhart and Martinelli correlations and its applications. OR	07
Q.4	(a)	What are the reasons of energy losses in pipelines?	03
-	(b)		04
	(c)	Discuss the assumptions and steps calculating thickness of the pipe for	07
		the condition of internal and external pressure.	
Q.5	(a)	What is the importance of PFD and P & ID in manufacturing units?	03
.	(b)		04
	(-)	system.	
	(c)	•	07

OR

Q.5	(a)	Calculate allowable internal pressure P for Schedule 40 mild steel	03
		pipe having ultimate tensile strength (S value) of 65,300 psi.	
	(b)	What is (1) NPSH (2) ASME (3) Fanning Friction Factor (4) Cavitation	04
	(c)	Draw and explain P & ID of distillation column and pumps.	07
