GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-VII (NEW) EXAMINATION - WINTER 2024

Subject Code:3170502 Date:07-12-2024

Subject Name: Process Equipment Design

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

1. Attempt all questions.

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

03

04

07

- **Q.1** (a) Explain the effect of baffle cut and baffle spacing on shell side heat transfer coefficient in a shell and tube heat exchanger.
 - (b) Explain concept of NPSH in pumping system. Distinguish between $(NPSH)_A$ and $(NPSH)_R$. If $(NPSH)_A$ is less than $(NPSH)_R$, then suggest corrective action to make $(NPSH)_A$ greater than $(NPSH)_R$.
 - (c) Estimate minimum reflux ratio and minimum number of ideal stages needed for the butane-pentane splitter defined by the compositions given in table below. The column is operated at a pressure of 8.3 bar. The feed is at its boiling point. Top and bottom temperatures are 65 °C and 120 °C respectively.

Component	Feed, kmol/hr	Distillate, kmol/hr	Bottom, kmol/hr	
Propane	5	5	?	
i-Butane	15	15		
n-Butane	25	24	?	
i-Pentane	20	?	19	
n-Pentane	35	?	35	

Relative volatilities at top and bottom are listed in table below.

Component	Top	Bottom
Propane	5.5	4.5
i-Butane	2.7	2.5
n-Butane	2.1	2
i-Pentane	1	1
n-Pentane	0.84	0.85

Useful equations for calculation,

Thom,
$$\sum \frac{\alpha_{i}x_{id}}{\alpha_{i} - \vartheta} = R_{m} + 1$$

$$\sum \frac{\alpha_{i}z_{if}}{\alpha_{i} - \vartheta} = 1 - q$$

$$N_{m} = \frac{\log\left[\left(\frac{x_{LK}}{x_{HK}}\right)_{d}\left(\frac{x_{HK}}{x_{LK}}\right)_{b}\right]}{\log\alpha_{LK}}$$

- Q.2 (a) Appreciate/criticize the following sentence with appropriate argument. "Superheated steam is preferred over saturated steam as a heating medium due to its higher heat transfer coefficient."
 - **(b)** Discuss merits and demerits of air cooled heat exchanger over water cooled heat exchanger.

03

- (c) Lube-oil (flowrate 450 L/min) is to be cooled from 65 °C to 45 °C with the cooling water. Calculate.
 - (i) flow rate of cooling water.
 - (ii) tube side heat transfer coefficient.

Use following data for calculation purpose.

4-1 pass shell and tube heat exchanger

Shell side fluid = lube-oil, Tube side fluid = cooling water

Cooling water inlet temperature = 35 °C

Cooling water outlet temperature = 39 °C

Assume value of overall heat transfer coefficient of 400 W/m².°C.

Tube length = 10 ft

Tube outside diameter = 15.875 mm

Tube inside diameter = 13.3858 mm

LMTD correction factor = 0.95

Property	Lube-oil	Cooling water
Density, kg/m ³	869	993.328
Viscosity, cP	15	0.73
Specific heat, kJ/kg.°C	2.1413	4.1868
Thermal conductivity, W/m.°C	0.13	0.628

Useful equation for calculation,

$$Nu = 0.023 Re^{0.8} Pr^{0.33} \left(\frac{\mu}{\mu_w}\right)^{0.14}$$

OF

- (c) Discuss step-wise design procedure for horizontal condenser (condensation taking on shell side). Assume that vapor is saturated vapour and no phase change occurs for tube side fluid.
- Q.3 (a) Discuss the criteria for fluid allocation in shell and tube heat exchange.
 - **(b)** Explain Tinker's flow model with a neat diagram.
 - (c) In design of vertical thermosyohon Reboiler recirculation ratio is determined via trial and error calculation. In calculation, one of the following hypothetical conditions arises for the assumed value of recirculation ratio.
 - (i) $\Delta Pav \approx \Delta Pt$
 - (ii) $\Delta Pav >> \Delta Pt$
 - (iii) $\Delta Pav < \Delta Pt$

Discuss how to find or fix the recirculation ratio in each of the above condition.

OR

- Q.3 (a) Discuss merits and demerits of U-tube heat exchanger over floating head heat exchanger.
 - **(b)** Discuss criteria of selection between horizontal and vertical condenser.
 - (c) Discuss stepwise design procedure for kettle type reboiler.
- Q.4 (a) Discuss the effect of reflux ratio on fixed, operating and total cost of distillation column. 03
 - **(b)** Discuss selection criteria for operating pressure in a distillation column.
 - (c) Differentiate between jet flooding and downcomer flooding. Discuss stepwise procedure to calculate pressure drop in a sieve tray distillation column.

OR

- Q.4 (a) Define: (1) Light key component, (2) Minimum reflux ratio, and (3) Non-key component
 - (b) Discuss selection criteria between tray and packed tower for distillation operation. 04
 - (c) Discuss the design steps to calculate the number of theoretical stages in binary distillation column.

2

07

04

04

07

04

Q.5	(a)	a) Explain the function of liquid distributors, liquid re-distributor and packing support in packed tower absorber.		
	(b)			
		perspective.		
	(c)	1. Discuss about five standard types of pressure taps for orifice meter.	07	
		2. State advantages and disadvantages of orifice meter over venturi meter.		
		OR		
Q.5 (a)	(a)	Define: (1) Design stress, (2) Corrosion Allowance, and (3) Welding Joint efficiency	03	
		factor.		
(b)		Discuss about radiography test in detail.		
	(c)	Explain use of baffles, tie rods, spacers, tube side pass partition plate, shell side pass	07	
		partition plate, tube sheet and expansion joints in shell and tube heat exchanger.		
