Seat No.:	Enrolment No.
3Cat 110	Lindincht 110.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE – SEMESTER- VII EXAMINATION-SUMMER 2023

Subject Code: 3170513	Date: 21/06/2023
Subject Name: Process Modelling, Simul	ation and Optimization
Time: 10:30 AM TO 01:00 PM	Total Marks: 70
Instructions:	

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1	(a)	Explain the meaning of following terms for optimization: Feasible solution, feasible region, optimal solution.	03
	(b)	Describe the major obstacles to optimization problem.	04
	(c)	List the six general steps for the analysis and solution of optimization problem.	07
Q.2	(a)	Explain various applications of modelling and simulation.	03
	(b)	A box with a square base and open top is to hold 1000 cm ³ . Find the dimensions that require the least material (assume uniform thickness of material) to construct the box.	04
	(c)	Discuss the optimizing recovery of waste heat with suitable figure and equations.	07
		OR	
	(c)	Explain the features of Basic Tearing Algorithm.	07
Q.3	(a)	Explain equation solving approach in brief.	03
	(b)	Explain white box model.	04
	(c)	Develop batch reactor model.	07
		OR	
Q.3	(a)	Explain the importance of degree of freedom in model building.	03
	(b)	Differentiate between steady state and dynamic simulation.	04
	(c)	What is sequential modular approach in simulation? Explain the step with diagram.	07
Q.4	(a)	Explain the uses of mathematical models.	03
	(b)	Explain the penalty methods for solving nonlinear programming with constraints.	04
	(c)	Develop the equations for the series of isothermal, variable holdup CSTRs. List all the assumptions with their justifications.	07
		OR	
Q.4	(a)	Explain simplex search method.	03
	(b)	Determine positive-definiteness of a function $f(x) = 2x_1^2 - 3x_1x_2 + 2x_2^2$.	04
	(c)	Explain in brief how one-dimensional search is applied in a multidimensional problem.	07

Q.5 (a) Explain Lagrange multiplier method. 03 (b) Explain the necessary and sufficient conditions for an extremum of an **04** unconstrained function. (c) Minimize function $f(x) = x^4 - x + 1$ using Newton's method for starting point **07** of x = 3 show five iterations. OR (a) Minimize the quadratic function $f(x) = x^2 - x$ using finite difference newton Q.5 03 method start with x = 3 and h = 0.001. **(b)** Write a short note on decomposition of networks. 04 (c) Solve the following linear programming problem using simplex method **07** Maximize $Z = 6x_1 + 5x_2$ Subject to $x_1 + x_2 \le 5$ $3x_1 + 2x_2 \le 12$ $x_1, x_2 \ge 0$