Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2023

Subject Code:3170511 Date:19-12		2023	
Su	bject	Name: Transport Phenomena	
Time: 10:30 AM TO 01:00 PM Total Mai		s:70	
Ins	truction		
	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	MARKS
0.1	()		
Q.1	(a) (b)	State the general equations that govern any transport process. Cite the reasons for studying Transport Phenomena.	03 04
	(b) (c)	State and discuss the various levels of transport phenomena studies in detail.	07
	(C)	State and discuss the various levels of transport phenomena studies in detail.	U7
Q.2	(a)	Compute the steady-state momentum flux τ_{yx} in N/m ² ? When the lower plate	03
		velocity v is 1 ft/s in the positive x direction, The distance Y between the two	
		parallel plates is 0.001 ft, and the fluid viscosity μ is 0.7 cp.	
	(b)	Discuss about the conservation laws.	04
	(c)	Discuss with appropriate equation and schematic representation about the	07
		molecular transport of momentum.	
		OR	
	(c)	Derive the relation for velocity distribution for flow through a circular tube	07
Q.3	(a)	Compare thermal conductivity, thermal diffusivity and heat capacity in terms	03
		of dimensionless number.	
	(b)	State the commonest of boundary conditions in molecular energy transport.	04
	(c)	Discuss in brief pressure and temperature dependence of viscosity depicting appropriate equations.	07
		OR	
Q.3	(a)	State the shell momentum balance equation?	03
Q.C	(b)	Define mass and molar average velocities.	04
	(c)	State and discuss the procedure for setting up and solving viscous flow	07
	(0)	problems with reference to velocity distributions in laminar flow.	0,
Q.4	(a)	Compute the thermal conductivity of molecular oxygen at low pressure and	
		300 K. The Lennard-Jones constants for molecular oxygen are $\sigma = 3.433$ A° and $\epsilon/K = 113$ K, and its molecular weight M is 32, and $\Omega_k = 1.074$.	03
	(b)	Discuss Fourier's Law of heat conduction in brief on the basis of molecular	04
	(b)	energy transport.	V 4
	(c)	Derive the relation for heat flux distribution for heat conduction with a	07
	(6)	nuclear heat source.	07
		OR	
Q.4	(a)	Discuss the significance of momentum, thermal and mass diffusivities.	03

	(b)	Calculate the heat loss per m ² of surface area for an insulating wall composed of 25.4 mm thick fibre insulating board, where the inside temperature is 352 K and the outside temperature is 297 K. the thermal conductivity of fibre is 0.048 W/m K.	04
	(c)	State and discuss the various methods of calculating self diffusivity and binary diffusivity.	07
Q.5	(a)	Show that for equimolar counter diffusion $D_{AB} = D_{BA}$ expressed in terms of molecular mass diffusion.	03
	(b)	Explain the molecular diffusion in gases with appropriate equations.	04
	(c)	Deduce the expression for diffusion with a heterogeneous chemical reaction with appropriate schematic diagram.	07
		OR	
Q.5	(a)	State the shell mass balance equation and boundary conditions used for solving the mass transport problems.	03
	(b)	Estimate the diffusion coefficient for acetone in water at 25 O C using Wilke-Chang equation. The association parameter $\Psi_B = 2.6$, μ for water = 0.8937cp. The atomic volume for C = 14.8 cm ³ /gmol, H = 3.7 cm ³ /gmol, O = 7.4 cm ³ /gmol.	04
	(c)	Derive an equation for the diffusion in homogeneous chemical reaction with appropriate schematic diagram.	07