Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 2022

Subj	ect	Code:3170511 Date:12-02	1-2023
_		Name:Transport Phenomena :30 AM TO 01:00 PM Total Mai	rks:70
Instru			115070
	2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	4.	Simple and non-programmable scientific calculators are allowed.	
Q.1	(a) (b) (c)	Discuss the three levels at which the transport phenomena is studied.	Marks 03 04 07
Q.2	(a)	Define Prandtl number.	03
Q.2	(b)		04
	(c)		07
		OR	
	(c)	Derive equation for momentum for a Newtonian incompressible fluid.	07
Q.3	(a)	Write general shell momentum balance equation.	03
C	(b)	•	04
	(c)		07
Q.3	(a) (b)	Define Reynold's number. A fluid of viscosity 0.7 cP is present between two parallel plates separated by a distance 0.001 ft. If the lower plate moves with the velocity 1ft/sec in positive x direction, compute the steady state momentum flux τ_{yx} in	03 04
	(c)	Pascal. Derive the equation for pressure drop for laminar flow of an Newtonian, incompressible fluid through a circular cross section pipe.	07
Q.4	(a)	Define the molecular heat flux.	03
Q. -	(b)		04
	(c)	Derive equation for temperature drop in a conductor wire for an electrical heat source The rate of heat production per unit volume is given by the expression $S_e = I^2/k_e$.	07
Q.4	(a)	OR State the Fourier's law of heat conduction.	03
Ų. 1	(a) (b)		03
	(c)	Derive the equation for temperature distribution for chemical reaction as	07

heat source.

Q.5	(a)	Define Mass and Molar Concentrations, Mass Average and Molar	03
		Average Velocities, Molecular Mass and Molar Fluxes	
	(b)	Explain temperature and pressure dependency of diffusivity.	04
	(c)	Derive the relation for diffusivity in case of equimolar counter diffusion.	07
		OR	
Q.5	(a)	Define binary Diffusivity.	03
	(b)	Shortly explain the theory of diffusion in gases at low density.	04
	(c)	With neat diagram derive an equation of molar flux for the diffusion with	07
		heterogeneous chemical reaction as $2A \rightarrow B$.	
