GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - SUMMER 2024

Subject Code:3170511 Date:01-06-2024

Subject Name: Transport Phenomena

Time:02:30 PM TO 05:00 PM

Total Marks:70

Instructions:

- 1. Attempt all questions.
- Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

0.1 (a) Compare Scalar, Vector and Tensor. 03

- (b) Examine the following velocity fields for the zero divergence and 04 Irrotational vector. (bold indicates vector)
 - a) $\mathbf{u} = \mathbf{b}\mathbf{y}\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$
 - b) $\mathbf{v} = b\mathbf{x}\mathbf{i} b\mathbf{x}\mathbf{j} + 0\mathbf{k}$
 - c) $\mathbf{w} = \mathbf{b}\mathbf{y}\mathbf{i} + \mathbf{b}\mathbf{x}\mathbf{j} + 0\mathbf{k}$
 - d) $\mathbf{s} = -\mathbf{b}\mathbf{y}\mathbf{i} + \mathbf{b}\mathbf{x}\mathbf{j} + 0\mathbf{k}$
- (c) Estimate the thermal conductivity of following gas mixture at 1 atm 07 and 293 K from given data on the pure components at same pressure and temperature

a temperature						
Species	α	$\begin{array}{c} \text{Mole} \\ \text{fraction} \\ x_{\alpha} \end{array}$	Molecular Weight	$\begin{array}{c} \mu_{\alpha} \times 10^7 \\ (\text{gm/cm.s}) \end{array}$	$\begin{array}{c} k_{\alpha}\!\!\times\!\!10^7\\ (cal/cm.s.K) \end{array}$	
CO_2	1	0.133	44.01	1462	383	
O_2	2	0.039	32	2031	612	
N ₂	3	0.828	28.016	1754	627	

- **Q.2** Oil has a kinematic viscosity of 2×10^{-4} m²/s and a density of 0.8×10^{-4} 03 (a) 10³ g/m³. If we want to have a falling film of thickness of 2.5 mm on a vertical wall, what should the mass rate of flow of the liquid be?
 - (b) Find $\tau \cdot \mathbf{v}$ (dot product) and $\tau \times \mathbf{v}$ (cross product). τ is a tensor and \mathbf{v} 04 is vector
 - (c) Derive the expression for max velocity, avg. velocity and mass flow 07 rate for a flow through circular pipe system.

OR

A viscous fluid is in laminar flow in a slit formed by two parallel walls 07 at a distance 2B apart. Make a differential momentum balance and obtain the expression for the distributions of momentum flux and velocity.

Q.3	(a)	Explain Newton's Law of Viscosity	03
	(b)	Give the significance of Total time derivative, Partial time derivative and Substantial time derivative with example.	04
	(c)	Derive Continuity equation and prove that for incompressible fluids divergence of velocity vector is zero i.e. $\nabla \cdot \mathbf{v} = 0$	07
		OR	
Q.3	(a)	State and explain the general shell momentum balance equation.	03
	(b)	State the significance of three dimensionless numbers having thermal, momentum and molar diffusivity. (viz. Pr. Sc. and Le.)	04
	(c)	A liquid is slowly flowing down an inclined flat plate of length L and width W. Find Velocity distribution as a function of the fluid film thickness. Also find maximum and average velocity. Neglect end effects.	07
Q.4	(a)	Explain Fourier's Law of heat conduction	03
	(b)	Compare thermal conductivity and thermal diffusivity with necessary equations	04
	(c)	For heat conduction with electrical source, construct the expression of Max. Temperature, Avg. Temperature and heat outflow at surface of electric wire	07
		OR	
Q.4	(a)	Explain the molecular and convective and total heat flux	03
	(b)	Explain the various boundary conditions used to solve heat transport problems.	04
	(c)	Construct the expression of effectiveness of Cooling Fin	07
Q.5	(a)	Explain Fick's law of binary diffusion.	03
	(b)	Explain Mass and Molar Fluxes, Convective Mass and Molar Fluxes.	04
	(c)	Develop the mass flux equation for steady-state diffusion of A through stagnant B with the liquid vapor interface maintained at a fixed position.	07
		OR	
Q.5	(a)	Explain Temperature and Pressure dependence of diffusivities.	03
	(b)	Explain Mass and Molar Concentrations, Mass Average and Molar Average Velocity.	04
	(c)	Develop mass flux equation for diffusion Into a Falling Liquid Film (Gas Absorption, Forced Convection Mass Transfer)	07
