Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

Subje	ect C	BE - SEMESTER-V (NEW) EXAMINATION – WINTER 202 ode:3151107 Date:07-	
•		ame:Advance Microcontroller	
		0 AM TO 01:00 PM Total Ma	arks:70
Instru	1. A 2. N 3. F	attempt all questions. Iake suitable assumptions wherever necessary. igures to the right indicate full marks. imple and non-programmable scientific calculators are allowed.	MARKS
0.1	(a)	Describe IDO and EIO processor mode in ADM	03
Q.1	(a) (b)	Describe IRQ and FIQ processor mode in ARM. Differentiate RISC and CISC.	03
	(c)	Describe the RISC features which are accepted and rejected to design ARM architecture.	07
Q.2	(a)	Describe each field of CPSR Register.	03
	(b)	Describe following ARM instructions with example: (1) ADDEQS (2) MLA (3) TEQ (4) MVN	04
	(c)	Describe 3-stage pipelined architecture of ARM7. OR	07
	(c)	What is Cortex? Compare features of ARM Cortex series with ARM7 core.	07
Q.3	(a)	Write assembly language program to multiply given number (in R2 register) by 35 without using multiply instructions. Move result to R10 register after operation.	03
	(b)	Describe following instruction with its addressing mode, with example. (1) LDR R1, [R2], 16 (2) LDR R1, [R2, 16] (3) LDR R1, [R2, 16]! (4) LDR R1, [R2, R3]!	04
	(c)	Describe "Branch" and "Branch with Link" instruction with suitable example.	07
Q.3	(a)	Write assembly language program to (1) shift left R1 by 32 and (2) logical shift right R2 by 8 (3) Add both result in R3. Assume R1=0x34, R2 = 0x53A0, What will be content of R1, R2 and R3 after executing the code.	03
	(b)	Describe following instructions with suitable example. (1) LDMIA R1, {R2-R10} (2) LDMDB R1!, {R2-R10}	04
	(c)	Describe Thumb mode in ARM processor. Differentiate ARM mode and Thumb Mode. How to switch from/to Thumb mode to/from ARM	07

mode?

Q.4	(a)	What is MMU? Enlist merits and demerits of MMU.	03
	(b)	Describe following assembler directives:	04
		AREA, DCD, ADR, ENTRY	
	(c)	Sketch circuit diagram of LCD interfacing with LPC2148. Write C-	07
		program to display "MICROCONTROLLER" on first line of LCD.	
		OR	
Q.4	(a)	Enlist main control components of ARM MMU.	03
	(b)	Write assembly language instruction for following operations:	04
		if(R0 < (R5+R7))	
		{	
		R1 = R1 + R2*8	
		R3 = R3 - R1*16	
		}	
	(c)	Sketch circuit diagram to interface following devices with LPC2148.	07
		(1) Eight LEDs at P1.0 to P1.7	
		(2) single switch (SW1) at P1.16	
		(3) Single relay (R1) at P1.20	
		Write C-program to turn on LEDs as per binary counter if switch is	
		pressed. When counter pattern reach at 0xFF, turn-on relay for 1	
		second.	
		second.	
Q.5	(a)	Describe code optimization techniques of embedded C-programming	03
Q	(b)	Describe basic architecture of cache memory.	04
	(c)	Sketch and Describe AMBA bus arbitration with help of diagram.	07
	(0)	OR	07
Q.5	(a)	Describe concept of inline assembly code in ARM C-program.	03
	(b)	Describe function of translation look aside buffers in virtual memory	04
	` /	system.	
	(c)	Compare AHB, APB and ASB of AMBA bus system of ARM	07
	•	Architecture.	
