GUJARAT TECHNOLOGICAL UNIVERSITY

BE- SEMESTER-V (NEW) EXAMINATION – WINTER 2024

Subject Code:3151105 Date:05-12-2024

Subject Name:VLSI Design

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

Q.1	(a) (b)	Draw VLSI design flow Y chart. Draw voltage transfer characteristics of ideal and practical inverter and	Marks 03 04
	(c)	define V _{IL} , V _{IH} , V _{OL} , V _{OH} , NM _L and NM _H . Derive threshold voltage equation and explain what is substrate bias effect?	07
Q.2	(a)	Compare full-custom, semi-custom and programmable VLSI design style.	03
	(b)	What is photo lithography? Differentiate positive and negative photo resist material.	04
	(c)	Derive MOSFET current -voltage characteristics using gradual channel approximation.	07
		OR	
	(c)	Explain MOS System under External Bias with neat sketch of cross sectional view and energy band diagram and derive depletion region depth equation.	07
Q.3	(a)	What is the need of Scaling? Compare constant field and constant voltage scaling.	03
	(b)	Draw resistive load inverter. Derive V_{OL} and V_{IL} critical voltages equation of resistive load inverter.	04
	(c)	Consider resistive-load inverter with $R_L=200~k\Omega.$ The enhancement-type nMOS driver transistor has the following parameters $V_{DD}=5~V,$ $V_{TO}\!\!=0.8V~\mu nCox=20~\mu A/V^2$, W/L= 2. Determine $V_{OL},$ V_{IL} and NM_L .	07
		OR	
Q.3	(a)	Enlist advantages and disadvantages of FinFET over Planner MOSFET	03
	(b)	Draw CMOS inverter with leads name of pMOS and nMOS transistors. Derive V _{IL} critical Voltage equation of CMOS inverter	04
	(c)	Consider a CMOS inverter circuit with the following parameters: V_{DD} =3.3V, V_{TON} =0.6 V, V_{TOP} = -0.7 V, kn = 200 $\mu A/V^2$, kp = 80 $\mu A/V^2$, find the NM_L	07
Q.4	(a)	Implement following Boolean expression using CMOS inverter. $Z=(A(D+E)+BC)$ '	03
	(b)	Realize following Boolean logic equation using Transmission Gate (TG). $F = XY + X'Z' + XY'Z$	04

	(c)	Derive the equation for propagation delay of output signal during high to low transition of output of CMOS inverter circuit with Cload as load capacitance.	07
		OR	
Q.4	(a)	Draw CMOS ring oscillator and its out waveform. Write generated frequency equation.	03
	(b)	Construct D latch using CMOS inverters and Transmission Gates.	04
	(c)	Explain interconnect delay analysis using Elmore Delay model.	07
Q.5	(a)	Define controllability and observability	03
	(b)	Design CMOS SR latch circuit based on NOR gate.	04
	(c)	Explain voltage bootstrapping and derive capacitance ratio equation?	07
		OR	
Q.5	(a)	What is need of domino CMOS logic circuit and draw it's circuit diagram.	03
	(b)	What is clock skew. Draw different clock distribution networks	04
	(c)	Write a short note on CMOS Transmission gate.	07
