| Seat No.: | Enrolment No. | |-----------|---------------| | DEALING | EMIOHIGHUNO. | ## **GUJARAT TECHNOLOGICAL UNIVERSITY** | Subi | ect | BE - SEMESTER-VI(NEW) EXAMINATION – WINTER 2022
Code:3161003 Date:13-12-202 | 22 | |---|------------|---|----------| | Subject Name:Antennas and Propagation Time:02:30 PM TO 05:00 PM Instructions: | | | | | Instru | 1.
2. | Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. | | | Q.1 | (a) | Enlist and define the different types of aperture of an antenna. | 03 | | | (b) | Derive the condition, When an antenna is act as radiator. Also discuss its different cases. | 04 | | | (c) | Write the statement of pattern multiplication theorem. Explain it in detail by using any example. | 07 | | Q.2 | (a) | Classify the antennas according to radiation pattern. | 03 | | | (b) | The measured Half Power Beam widths of an antenna in the two orthogonal planes are 30° and 20°. Antenna efficiency is 100%. Calculate the approximate gain of the antenna. | 04 | | | (c) | | 07 | | | (c) | | 07 | | Q.3 | (a) | What is meant by reciprocity Theorem? | 03 | | | (b)
(c) | Describe the various forms of Horn antenna. Obtain the design equations of Horn antenna. | 04
07 | | Q.3 | (a) | OR Calculate the maximum effective aperture of a microwave antenna which has | 03 | | Q.S | (a) | a directivity of 800. Frequency of operation is 6GHz. | Ů. | | | (b) | | 04 | | | (c) | radiation filed is equal to the induction filed Describe the procedure for the measurement of gain of antenna under test. | 07 | | Q.4 | (a)
(b) | | 03
04 | | | (c) | Discuss the principle of working of Parabolic reflectors. Explain the various feed techniques, their relative merits and demerits. Discuss the role of f/d ratio in the parabolic reflectors.(f-focal length, D- diameter of reflector) OR | 07 | | Q.4 | (a)
(b) | Enlist the different types of lens antenna and explain in brief. | 03
04 | iii) Skip zone | | iv) Critical frequency | | |------------|--|---| | (c) | Explain and design 4-element yagi-uda antenna | 07 | | (a) | Explain Super refraction briefly. | 03 | | (b) | Discuss Dolph–Tchebysheff distribution for linear arrays. | 04 | | (c) | Give the radiation mechanism of Microstrip antenna | 07 | | | OR | | | (a) | What is meant by virtual height in radio wave propagation? | 03 | | (b) | Describe how helical antenna works in axial and normal mode. | 04 | | (c) | | 07 | | | (a)
(b)
(c)
(a)
(b) | (c) Explain and design 4-element yagi-uda antenna (a) Explain Super refraction briefly. (b) Discuss Dolph–Tchebysheff distribution for linear arrays. (c) Give the radiation mechanism of Microstrip antenna OR (a) What is meant by virtual height in radio wave propagation? (b) Describe how helical antenna works in axial and normal mode. (c) Draw the structure of atmosphere and ionosphere and explain in detail the | *****