Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION – WINTER 2023			
Subj	ect C	ode:3171003 Date:04-12-	2023
Subj	ect N	ame: Digital Signal Processing	
Time: 10:30 AM TO 01:00 PM Total Marks:70			s:70
Instru	ctions	:	
		Attempt all questions.	
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks. Simple and non-programmable scientific calculators are allowed.	
	4. \$	omple and non-programmable scientific calculators are anowed.	
Q.1	(a)	Define the following systems: Accumulator, forward difference,	03
	()	backward difference.	
	(b)	Explain commutative, distributive and associative properties of linear convolution.	04
	(c)	Discuss the inverse system and explain how a system and its inverse system both can be causal and stable.	07
Q.2	(a)	Give one example for each system: Memoryless, Time-invariant, stable.	03
	(b)	Relate Z.T with DTFT. Also give applications of Z.T.	04
	(c)	Explain differentiation and convolution properties of DTFT.	07
	(c)	OR Explain differentiation and convolution properties of ZT.	07
Q.3	(a)	A system function is given by $H(z) = \frac{1}{(1 - 0.25z^{-1})}$, then find corresponding	03
		difference equation and impulse response.	
	(b)	If $H(z)=1+\frac{1}{2}z^{-1}+\frac{1}{2}z^{-2}+z^{-3}$, then realize this function with	04
		minimum number of multipliers.	
	(c)	Find magnitude and phase response at ω =0 and π for a system function	07
		$H(z) = \frac{1}{(1 - 0.5z^{-1})}$	
		\mathbf{OR}	
Q.3	(a)	Discuss All pass system briefly.	03
Q.S	(b)	Explain structures for linear phase FIR systems.	04
	(c)	Find out all pass and minimum phase description of given system	07
	` '	$H(z) = \frac{(1+3z^{-1})}{(1+0.5z^{-1})}$	
		$11(Z) - \frac{1}{(1+0.5z^{-1})}$	
0.4	(.)		0.2
Q.4	(a) (b)	Give advantages of digital filters. Discuss design steps of IIR filter using bilinear transformation.	03 04
	(c)	Explain basic structure for IIR systems.	07
	(0)	OR	07
Q.4	(a)	Give limitations of Impulse Invariance method of designing IIR filter.	03
•	(b)	Discuss Goertzel algorithm.	04
	(c)	Explain design of FIR filters by Kaiser window and mention its advantages against the commonly used windows.	07

Q.5 (a) Define N-point DFT & IDFT. What is Twiddle factor?
(b) Discuss types of linear phase FIR systems.
03
04

(c) Explain decimation in frequency algorithm for radix-2.

OR

OR

Q.5 (a) Briefly explain frequency warping and pre-warping.
(b) Convert the given Analog Filter in to the digital filter using impulse invariance technique.

Ha(s)=(s + a) /{(s + a)² + b²}}

(c) If a causal sequence is given by x(n) = cos(nπ/2), 0 ≤ n ≤ 3, = 0, otherwise. , then compute 4 point DFT.
