GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - WINTER 2022

Subject Code:3171003 Date:18-01-2023

Subject Name: Digital Signal Processing

Time:10:30 AM TO 01:00 PM Total Marks:70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

MARKS

- Q.1 (a) For an energy signal x(n) with energy E_x , show that the energy of $y(n) = a^2 E_x$.
 - (b) Determine whether signal $x(n) = \cos(0.01 \pi n)$ is periodic or not. Find the period if the signal is periodic.
 - (c) Consider a system as $y(n) = log_{10}|x(n)|$. Determine whether the given system is linear, causal and stable or not.
- Q.2 (a) State and prove differentiation in frequency domain property of D.T.F.T.
 - (b) Explain the need of Z-transform over D.T.F.T. How to convert Z-transform into D.T.F.T.
 - (c) Let $X(e^{j\omega})$ denote the Fourier transform of the signal $x(n) = \{2, 1, 0, 1, 2, 1, 0, -1\}$. Evaluate:

$$\int_{-\pi}^{\pi} X(e^{j\omega}) d\omega$$
 and $\int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega$.

- (c) Consider a causal LTI system that is characterized by the difference equation $y(n) \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = 2x(n)$. Find the frequency response $H(e^{j\omega})$ and the impulse response h(n) of the system.
- Q.3 (a) Determine the z-transform of $x(n) = \left(\frac{1}{2}\right)^n u(n) + 2^n u(n)$ and depict the ROC and the locations of poles and zeros in the z-plane.
 - (b) Determine the inverse z-transform of $X(z) = \frac{1}{1-1.5 z^{-1}+0.5z^{-2}}$ if ROC: 04 0.5 < |z| < 1
 - (c) Determine the zeros for the following FIR systems and indicate whether the system is minimum phase, maximum phase, or mixed phase.

Im phase, maximum phase, of
$$H_1(z) = 6 + z^{-1} - z^{-2}$$

 $H_2(z) = 1 - z^{-1} - 6z^{-2}$
 $H_3(z) = 1 - \frac{5}{2}z^{-1} - \frac{3}{2}z^{-2}$
 $H_4(z) = 1 + \frac{5}{3}z^{-1} - \frac{2}{3}z^{-2}$

		OR	
Q.3	(a)	Determine the z-transform of $x(n) = \left(\frac{1}{2}\right)^n u(n) + 2^n u(-n-1)$ and	03
		\ -	
		depict the ROC and the locations of poles and zeros in the z-plane.	
	(b)	State and prove time shifting and scaling in z-domain property of z-	04
	()	transform.	
	(c)	List all the properties of Region-Of-Convergence (ROC).	07
Q.4	(a)	Draw the Direct form-I implementation of the given system transfer	03
Ų.Ŧ	(a)		03
		function $H(z) = \frac{1+2z^{-1}+z^{-2}}{1-0.75z^{-1}+0.125z^{-2}}$.	
	(b)		04
		function $H(z) = \frac{1+2z^{-1}+z^{-2}}{1-0.75z^{-1}+0.125z^{-2}}$.	
	(c)	Draw Direct form-I and Direct form-II structure for the function of	07
	(C)	y(n) = x(n) + 0.3 x(n-1) - 0.4 x(n-2) - 0.8 y(n-1) +	U/
		y(n) = x(n) + 0.3x(n-1) = 0.4x(n-2) = 0.6y(n-1) + 0.7y(n-2). Compare both the structure for hardware requirement.	
		OR	
Q.4	(a)		03
	(b)	2	04
	` /	method. Assume T=1s.	
	(c)	Using a rectangular window, design an LPF with a pass-band gain of	07
	(C)	unity, cut-off frequency of 1000 Hz, and working at a sampling	U7
		frequency of 5 KHz. Take the length of the impulse response as 7.	
		requeries of 5 1812. Take the length of the impulse response us 7.	
Q.5	(a)		03
	(b)		04
	(c)	Consider input sequence $x(n) = \{1, 2, 3\}$ and impulse response of a	07
		system $h(n) = \{1, 1\}$. Find the linear convolution using graphical	
		circular convolution method. Match result of same using tabulation/	
		matrix method.	
0.5	(c)	OR Using decimation in time election compute 4 point DET of the	0.2
Q.5	(a)	Using decimation in time algorithm, compute 4-point DFT of the sequence $x(n)=\{0, 1, 2, 3\}$	03
	(b)	Explain how computation complexity is reduced in FFT compared to	04
	(0)	DFT.	UT
	(c)	Discuss in brief: Radix-2 Decimation-in-Time FFT algorithms.	07
		ϵ	
