Time:02:30 PM TO 05:00 PM

1. Attempt all questions.

Instructions:

Subject Name:Digital Signal Processing

2. Make suitable assumptions wherever necessary.

4. Simple and non-programmable scientific calculators are allowed.

3. Figures to the right indicate full marks.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION – SUMMER 2024 Subject Code:3171003 Date:17-05-2024

Total Marks:70

			MARKS
Q.1	(a)	Prove that Accumulator is an unstable system.	03
	(b)	Describe properties of ROC for ZT.	04
	(c)	Define linear convolution and obtain the same for sequences: $x[n] = \delta[n] + 2*\delta[n-1] + 3*\delta[n-2] + \delta[n-3] & h[n] = \delta[n+1] + 2*\delta[n] + 2*\delta[n-1] - \delta[n-2].$	07
Q.2	(a)	State and prove time shifting property of ZT.	03
	(b)	Find the impulse response of a stable LTI system represented by the difference equation $y(n) - \frac{1}{2}y(n-1) = x(n) - \frac{1}{4}x(n-1)$, using DTFT.	04
	(c)	If ZT is given as $X(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 + \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$, $ Z > 1/2$, then determine the	07
		sequence $x(n)$.	
	(c)	OR Obtain the particular solution of the difference equation $y(n) = (5/6) y(n-1) - (1/6) y(n-2) + x(n)$ with input $x(n)=2^n$, $n \ge 0$ and zero elsewhere.	07
Q.3	(a)	If a system has $H(z) = \frac{(1-0.5z^{-1})}{(1-0.9z^{-1})}$, $ z \ge 0.9$, then find its inverse system,	03
	(1 -)	draw its ROC and check stability of this inverse system.	0.4
	(b)	If a causal LTI system has $\mathbf{H}(\mathbf{z}) = 1 - \frac{1}{3}\mathbf{z}^{-1} + \frac{1}{6}\mathbf{z}^{-2} + \mathbf{z}^{-3}$, then obtain	04
	(c)	SFG and its transposed SFG of its direct form realization. Define minimum phase system and obtain minimum phase-all pass	07
		decomposition for the system with $\mathbf{H}(\mathbf{z}) = \frac{(1+3\mathbf{z}^{-1})}{(1+0.5\mathbf{z}^{-1})}$	
		OR	
Q.3	(a)	A system function is $\mathbf{H}(\mathbf{z}) = \frac{1}{(1 - 0.5\mathbf{z}^{-1})}$, with ROC $ \mathbf{z} \ge 0.5$, then obtain	03
	(b)	corresponding difference equation and impulse response. Discuss types of linear phase FIR systems.	04
	(c)	Define all pass system and obtain minimum phase-all pass decomposition for	07
		the system with $\mathbf{H}(\mathbf{z}) = \frac{(1-2\mathbf{z}^{-1})}{(1+0.3\mathbf{z}^{-1})}$	
Q.4	(a) (b)	Give advantages and disadvantages of Digital filters. Compute 4 point DFT of a sequence $x[n] = 1/3*\delta[n] + 1/3*\delta[n-1] + 1/3*\delta[n-2]$.	03 04
			1

	(c)	If $\mathbf{H}(\mathbf{z}) = \frac{1+2\mathbf{z}^{-1}+\mathbf{z}^{-2}}{1-0.75\mathbf{z}^{-1}+0.125\mathbf{z}^{-2}}$, then obtain direct form-I and II realizations.	07
		OR	
Q.4	(a)	Give comparison of Analog and Digital filters.	03
	(b)	Compute 4 point DFT of a sequence $x[n]=2^n$, $0 \le n \le 3$.	04
	(c)	Discuss structures for linear phase FIR systems.	07
Q.5	(a)	Give advantages and dis-advantages of FIR filters over IIR filters.	03
C	(b)	Explain Impulse Invariance method for IIR Fiter design.	04
	(c)	Explain signal flow graph of the decimation in time decomposition of an N point DFT computation into two N/2 point computation if N=8.	07
		OR	
Q.5	(a)	Explain frequency warping and Pre-warping regarding filter design.	03
	(b)	Discuss Kaiser Window method for FIR Fiter design.	04
	(c)	How FFT is more efficient than DFT? Discuss Goertzel Algorithm for direct computation of selected values of DFT.	07
