Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE – SEMESTER- VII EXAMINATION-SUMMER 2023

Subject Code: 3171003 Date: 22/06/2023

Subject Name: Digital Signal Processing

Time: 10:30 AM TO 01:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

			MARKS	
Q.1	(a) (b)		03 04	
	(c)	What is BIBO stable system? Give derivation in support to the necessary condition for BIBO stable system.	07	
Q.2	(a)	Classify various discreet systems.	03	
	(b)	·	04	
	(c)	Check the stability and causality of the system describe by impulse response $h(n) = 5^n u(3-n)$	07	
		\mathbf{OR}		
	(c)	Find linear and circular convolution of the sequences	07	
		$x(n)=\{1,2,3,4\}$ and $h(n)=\{2,1,2,1\}$. Compare it and write your comment.		
Q.3	(a)	Find the Z transform of the given system $y(n) = u(n)+2u(n-1)-4u(n-2)+u(n-3)$	03	
	(b)		04	
	(c)	Determine the response of the system,	07	
		$y(n)=(5/6)y(n-1)-(1/8)y(n-2)+x(n),$ to the input signals $x(n)=\delta(n)-(1/3)\delta(n-1)$		
		OR		
Q.3	(a)	Find the Z transform of the given signal $x(n) = na^n u(n)$	03	
	(b)	State and prove time shifting property of Z transform.	04	
	(c)	If $y(n)=0.85y(n-1)+0.15x(n)$ is system difference equation then find output for input $x(n)=u(n)$.	07	
Q.4	(a)	List the advantages of representing the Discreet time system in block diagram form.	03	
	(b)	Compare direct form I and direct form II structure of filter realization.	04	
	(c)	Realize the system described by following difference equation using direct form II structure.	07	
		$y(n) = y(n-1) - \frac{1}{2}y(n-2) + x(n) - x(n-1) + x(n-2)$		
OR				
Q.4	(a)	Write steps to convert block diagram realization of Discreet Time System into signal flow graph.	03	

	(b)	Briefly explain effect of coefficient quantization in filters.	04
	(c)	Obtain the system function H (z) and difference equation for h (n) = $\{1,-2,-2,3\}$.	07
		Draw the filter structure.	
Q.5	(a)	Compute 4 point DFT of	03
		$x(n)=\{0,1,2,3\}$ using linear transformation.	
	(b)	Find out $H(z)$ for the given $H(s) = 2/(s2+3s+2)$ using impulse invariance method.	04
		Take T= 1s	
	(c)	Derive the RADIX 2 structure of Decimation In Frequency Fast Fourier Transform with	07
		butterfly diagram and also bit reversal table. Comment of Computational Complexity of	
		it.	
		OR	
Q.5	(a)	Calculate 4 point DFT of sequence	03
		$x(n) = cos(n\pi/2)$ for $n=0,1,2,3$	
	(b)	Compare any two Windowing techniques used in FIR filter.	04
	(c)	Explain impulse invariance method for designing digital IIR filter.	07
	. ,		
