Seat No.: _____ Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION – SUMMER 2022 Subject Code:3171003 Date:16/0			
•	:02:30 ctions: 1. At 2. Ma	me:Digital Signal Processing O PM TO 05:00 PM Total M tempt all questions. ake suitable assumptions wherever necessary. gures to the right indicate full marks.	arks: 70
	4. Sir	nple and non-programmable scientific calculators are allowed.	
			MARKS
Q.1	(a)	Define the given terms for digital signal processing. (1) static system (2) stable system (3) inverse system	03
	(b)	Give the necessary condition for impulse response h(n) of a system to be causal and stable.	04
	(c)	Consider a system with impulse response $h(n) = \{1,2,1,-1\}$ and input signal $x(n) = \{1,2,3,1\}$. Find the output signal $y(n)$. Consider first samples of $x(n)$ and $y(n)$ as $y(n)$.	07
Q.2	(a)	Find cross-correlation of $x(n)=\{1,2,3\}$ and $y(n)=\{3,2,1\}$. Consider first samples of $x(n)$ and $y(n)$ as $n=0$.	03
	(b)	Prove time shifting property of Z-Transform with an example.	04
	(c)	Explain and prove how Z-transforms help for linear convolution of any two sequences. OR	07
	(c)	Draw direct form-II structure for the LTI system given by $y(n) = -\frac{3}{8}y(n-1) + \frac{3}{32}y(n-2) + \frac{1}{64}y(n-3) + x(n) + 3x(n-1) + 2x(n-2)$	07
Q.3	(a) (b)	Compare DTFT and DFT. Find Z-transform of sequence given by $x(n) = na^n u(n)$	03 04
	(c)	Find inverse Z-transform of following with ROC is $0.2 < z < 0.6$. $X(z) = \frac{1}{1 - 0.8z^{-1} + 0.12z^{-2}}$ OR	07
Q.3	(a)	List and explain any three properties of ROC in context of Z-transform.	03
	(b) (c)	Differentiate between linear and circular convolution. Find circular convolution of given sequences. $x(n)=\{1,-1,-2,3,-1\}$ and $p(n)=\{1,2,3\}$	04 07
Q.4	(a) (b)	Explain in brief minimum phase system. List various steps for designing FIR filter using windowing techniques.	03 04

(c) Realize the cascaded system for given difference expression

1

07

$$y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n) + \frac{1}{3}x(n-1)$$
OR

Q.4 (a) Compare FIR and IIR systems.

- 03
- (b) Discuss advantages of digital filter over analog filter.
- 04 07
- (c) For H(s) as given below, find the H(z) with use of impulse invariance method. Take sampling frequency as 5samples/sec.

$$H(s) = \frac{1}{(s-1)(s+2)}$$

Q.5 (a) Prove periodicity property of DFT.

- 03
- **(b)** Explain transpose form of structure with necessary diagram.
- 04
- (c) Draw and explain Radix-2 FFT DIT algorithm with neat diagram.
- 07

03

- OR
- Q.5 (a) Calculate numbers of complex addition and multiplication required when computing 1024 point DFT using direct method. Also do the same if radix -2 FFT is used.
- 04

(b) Discuss effect of co-efficient quantization.

- 04 07
- (c) Why frequency domain sampling is required? What should be the relation between number of samples (L) of a discrete time signal x(n) and its frequency domain samples (N)? Discuss all case when $L \ge N$, L=N

and $N \ge L$.
