Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-VII (NEW) EXAMINATION - SUMMER 2022

Subject Code:3171114 Date:08/06/2022

Subject Name:Introduction of Machine learning

Time:02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Simple and non-programmable scientific calculators are allowed.

						MARKS
Q.1	(a)	What do yo	u mean	bv Hvr	oothesis?	03
C	(b)	•			ervised and unsupervised Learning	04
	(c)			•	Explain techniques for dimensionality	07
Q.2	(a)	What is an l	Enseml	ole Lear	rning	03
	(b)				nd Linear Regression	04
	(c)	With Suitable Example Explain techniques for dimensionality reduction			07	
		State main difference between Bays Classifier and Naïve Bays Classifier Also Design a predictor for given Data of whether-				
		enjoy sport –or not using Naïve Bays Classifier.				
			ency Tab			
		Weather Overcast	No	Yes 4		
		Rainy	3	2		
		Sunny	2	3		
		Grand Total	5	9		
					OR	
	(c)	Explain wit	th Suita	able Pse	eudo code implementation of logistic	07

		OK .	
	(c)	Explain with Suitable Pseudo code implementation of logistic regression	07
		10g10bb1011	
Q.3	(a)	How bagging is used in Machine learning	03
	(b)	How perceptron works explain	04
	(c)	Explain with Suitable Pseudo code implementation of SVM.	07
		OR	
Q.3	(a)	How Boosting is used in machine learning	03
	(b)	Compare ReLu and Soft Max Function used in Neural Networks.	04
	(c)	Explain with suitable example back propagation Algorithm.	07
Q.4	(a)	Define with neat sketch Maximum Margin	03
	(b)	Differentiate between weights and Hyper parameter	04
	(c)	Give pseudo code for classification using Neural network	07
		OR	
Q.4	(a)	What is Deep learning?	03
	(b)	What do you mean by Over fitting, How to Solve this Problem	04
	(c)	Derive bound on number of training samples require for given	07
		accuracy, Define VC Dimension and Explain how to find its value	
		using suitable example.	

Q.5	(a)	Define Cost Function of Neural network	03
	(b)	Illustrate Bias and Variance problem of machine learning	04
	(c)	How random forest algorithm can be build using decision tree?	07
	, ,	OR	
Q.5	(a)	Explain about Hierarchical Clustering.	03
-	(b)	Differentiate between linear regression and logistic regression.	04
	(c)	Explain in detail working of K-mean clustering algorithm.	07
	. ,		
