GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER-V (NEW) EXAMINATION - SUMMER 2024

_			Date:18-05-2024	
•		me:Heat Transfer		
		PM TO 05:00 PM Total Marks:	70	
Instructi				
		tempt all questions.		
		ake suitable assumptions wherever necessary. gures to the right indicate full marks.		
		mple and non-programmable scientific calculators are allowed.		
		Marks		
Q.1	(a)	Do as directed:	03	
		1) Define : Thermal diffusivity.		
		2) Arrange the material in descending order of their thermal		
		conductivity; i) Water ii) Copper iii) Air and iv) Wood.		
	(1.)	3) Define: Anisotropic material.		
	(b)	Give four examples of free convection and four examples of forced convection observed from day to day life.		
	(c)	Explain the following with reference to a heat exchanger:	07	
		1. Fouling factor,		
		2. Effectiveness of heat exchanger,		
		3. Correction factor for multipass arrangement.		
Q.2	(a)	J J	03	
	-	radiation shield.		
	(b)	With suirable example, explain in brief abour black body, white body,	04	
	()	opquae body and transperant body.	^=	
	(c)	An aluminim fin ($k = 200 \text{W/mK}$, 2.5cm long,1m width, and 3.5mm thick) protrudes from a wall. The base is at 420°C and surrounding air	07	
		temperature is 30°C.		
		Determine the heat dissipated from the fin and fin efficiency for the fin is of finite length and heat loss from fin tip is negligible. Take h =		
		11W/m ² K.		
		OR		
	(c)	A furnace wall, 32 cm thick, is made up of an inner layer of brick	07	
	(0)	(k=0.84W/mK) covered with a layer of insulation $(k=0.16W/mK)$. The	٠.	
		furnace operates at a temperature of 1325°C and the ambient		
		temperature is 25°C.		
		i) Determine the thickness of brick and insulation which gives		
		minimum heat loss,		
		ii) Calculate the heat loss presuming that the insulating material has a		
		maximum temperature of 1200° C.		
		If the calculated heat loss is not accepted than state whether addition of		
		another layer of insulation would provide a satisfactory solution.		
0.2	()		0.2	
Q.3	(a)	Explain mean film temperature and bulk mean temperature.	03	
	(b)	Differentiate between boiling and condensation. Discuss the electrical analogy for radiant heat transfer.	04	
	(c)	Discuss the electrical analogy for radiant heat transfer.	07	

OR

		OK	
Q.3	(a)	Justify that a good absorber is also a good emitter for radiation heat transfer.	03
	(b)	Explain in detail about cross flow heat exchanger with its advantages. Give suitable examples.	04
	(c)	Define condensation process. Also explain film condensation and dropwise condensation.	07
Q.4	(a)	'It is desirable to use two thin fins instead of one thick fin for engine cooling'. Give reason.	03
	(b) (c)	What is insulation? State its four applications in engineering field. Write the most general equation in Cartesian co-ordinates for heat transfer by conduction. Deduce above equation for the following cases with suitable assumptions; (i) Laplace equation, (ii) Poisson equation, and (iii) Fourier equation.	04 07
		OR	
Q.4	(a)	Evaluate.	03
	(b)	Write the general differential equation in Cartesian co-ordinates for 3-D unsteady heat conduction by considering an infinitesimal volume element. Deduce there from the conduction equations for the following cases;	04
		(i) Steady state 1-D flow with heat generation at uniform rate within	
	(c)	material, (ii) Unsteady 2-D flow without heat generation. Explain physical significance of critical radius of insulation and derive an expression for the same critical radius in case of sphere.	07
Q.5	(a)	Differentiate natural and forced convection.	03
	(b)	State the similarities and difference between: 1) Nusselt number and Biot number, 2) Grashof Number and Reynold number.	04
	(c)	What is the limitation of Rayleigh's method of dimensional analysis? Which method is preferred in such case and how repeating variables are selected?	07
		OR	
Q.5	(a)	Define: Nusselt number, Grashof Number and Reynold number.	03
	(b)	State the governing law for convection heat transfer. Explain in brief about convection heat transfer coefficient.	04
	(c)	Using Buckingham– π theorem show that, $Nu = f$ (Re , Pr) for forced convection.	07
